Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
65d01574
Commit
65d01574
authored
May 15, 2016
by
Vladislav Samsonov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Some improvements
parent
25b2958e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
260 additions
and
153 deletions
+260
-153
pcaflow.hpp
modules/optflow/include/opencv2/optflow/pcaflow.hpp
+119
-2
pcaflow.cpp
modules/optflow/src/pcaflow.cpp
+141
-151
No files found.
modules/optflow/include/opencv2/optflow/pcaflow.hpp
View file @
65d01574
...
...
@@ -47,6 +47,123 @@ namespace cv
{
namespace
optflow
{
/*
class PCAFlowBasis
{
public:
Size size;
PCAFlowBasis( Size basisSize = Size( 0, 0 ) ) : size( basisSize ) {}
virtual ~PCAFlowBasis(){};
virtual int getNumberOfComponents() const = 0;
virtual void getBasisAtPoint( const Point2f &p, const Size &maxSize, float *outX, float *outY ) const = 0;
virtual Point2f reduceAtPoint( const Point2f &p, const Size &maxSize, const float *w1, const float *w2 ) const = 0;
};*/
/*
* Orthogonal basis from Discrete Cosine Transform.
* Can be used without any learning or assumptions about flow structure for general purpose.
* Gives low quality estimation.
*/
/*class PCAFlowGeneralBasis : public PCAFlowBasis
{
public:
PCAFlowGeneralBasis( Size basisSize = Size( 18, 14 ) ) : PCAFlowBasis( basisSize ) {}
int getNumberOfComponents() const { return size.area(); }
void getBasisAtPoint( const Point2f &p, const Size &maxSize, float *outX, float *outY ) const
{
for ( int n1 = 0; n1 < size.width; ++n1 )
for ( int n2 = 0; n2 < size.height; ++n2 )
outX[n1 * size.height + n2] =
cosf( ( n1 * M_PI / maxSize.width ) * ( p.x + 0.5 ) ) * cosf( ( n2 * M_PI / maxSize.height ) * ( p.y + 0.5 )
);
memcpy( outY, outX, getNumberOfComponents() * sizeof( *outY ) );
}
Point2f reduceAtPoint( const Point2f &p, const Size &maxSize, const float *w1, const float *w2 ) const
{
Point2f res( 0, 0 );
for ( int n1 = 0; n1 < size.width; ++n1 )
for ( int n2 = 0; n2 < size.height; ++n2 )
{
const float c =
cosf( ( n1 * M_PI / maxSize.width ) * ( p.x + 0.5 ) ) * cosf( ( n2 * M_PI / maxSize.height ) * ( p.y + 0.5 )
);
res.x += c * w1[n1 * size.height + n2];
res.y += c * w2[n1 * size.height + n2];
}
return res;
}
};*/
/*
class PCAFlowLearnedBasis : public PCAFlowBasis
{
private:
float *basisData;
unsigned numberOfComponents;
public:
PCAFlowLearnedBasis( const char *filename )
{
basisData = 0;
FILE *f = fopen( filename, "r" );
CV_Assert( f );
numberOfComponents = 0;
CV_Assert( fread( &numberOfComponents, sizeof( numberOfComponents ), 1, f ) == 1 );
CV_Assert( fread( &size.height, sizeof( size.height ), 1, f ) == 1 );
CV_Assert( fread( &size.width, sizeof( size.width ), 1, f ) == 1 );
CV_Assert( ( numberOfComponents > 0 ) && ( numberOfComponents % 2 == 0 ) );
basisData = new float[size.width * size.height * numberOfComponents];
CV_Assert( fread( basisData, size.width * size.height * sizeof( *basisData ), numberOfComponents, f ) ==
numberOfComponents );
fclose( f );
numberOfComponents /= 2;
}
~PCAFlowLearnedBasis()
{
if ( basisData )
delete[] basisData;
}
int getNumberOfComponents() const { return numberOfComponents; }
void getBasisAtPoint( const Point2f &p, const Size &maxSize, float *outX, float *outY ) const
{
const size_t chunk = size.width * size.height;
size_t offset = size_t( p.y * float(size.height) / maxSize.height ) * size.width + size_t( p.x * float(size.width) /
maxSize.width );
for ( unsigned i = 0; i < numberOfComponents; ++i )
outX[i] = basisData[i * chunk + offset];
offset += numberOfComponents * chunk;
for ( unsigned i = 0; i < numberOfComponents; ++i )
outY[i] = basisData[i * chunk + offset];
}
Point2f reduceAtPoint( const Point2f &p, const Size &maxSize, const float *w1, const float *w2 ) const
{
Point2f res( 0, 0 );
const size_t chunk = size.width * size.height;
const size_t offset = size_t( p.y * float(size.height) / maxSize.height ) * size.width + size_t( p.x *
float(size.width) / maxSize.width );
for ( unsigned i = 0; i < numberOfComponents; ++i )
{
const float c = basisData[i * chunk + offset];
res.x += c * w1[i];
res.y += c * w2[i];
}
return res;
}
};*/
class
OpticalFlowPCAFlow
:
public
DenseOpticalFlow
{
...
...
@@ -57,8 +174,8 @@ protected:
const
float
occlusionsThreshold
;
public
:
OpticalFlowPCAFlow
(
Size
_basisSize
=
Size
(
18
,
14
),
float
_sparseRate
=
0.02
,
float
_retainedCornersFraction
=
1.0
,
float
_occlusionsThreshold
=
0.00002
);
OpticalFlowPCAFlow
(
const
Size
_basisSize
=
Size
(
18
,
14
),
float
_sparseRate
=
0.02
,
float
_
retainedCornersFraction
=
1.0
,
float
_
occlusionsThreshold
=
0.00002
);
void
calc
(
InputArray
I0
,
InputArray
I1
,
InputOutputArray
flow
);
void
collectGarbage
();
...
...
modules/optflow/src/pcaflow.cpp
View file @
65d01574
...
...
@@ -50,7 +50,7 @@ namespace cv
namespace
optflow
{
OpticalFlowPCAFlow
::
OpticalFlowPCAFlow
(
Size
_basisSize
,
float
_sparseRate
,
float
_retainedCornersFraction
,
OpticalFlowPCAFlow
::
OpticalFlowPCAFlow
(
const
Size
_basisSize
,
float
_sparseRate
,
float
_retainedCornersFraction
,
float
_occlusionsThreshold
)
:
basisSize
(
_basisSize
),
sparseRate
(
_sparseRate
),
retainedCornersFraction
(
_retainedCornersFraction
),
occlusionsThreshold
(
_occlusionsThreshold
)
...
...
@@ -69,95 +69,6 @@ inline float eDistSq( const Point2f &p1, const Point2f &p2 )
inline
float
eNormSq
(
const
Point2f
&
v
)
{
return
v
.
x
*
v
.
x
+
v
.
y
*
v
.
y
;
}
void
OpticalFlowPCAFlow
::
findSparseFeatures
(
Mat
&
from
,
Mat
&
to
,
std
::
vector
<
Point2f
>
&
features
,
std
::
vector
<
Point2f
>
&
predictedFeatures
)
const
{
Size
size
=
from
.
size
();
const
unsigned
maxFeatures
=
size
.
area
()
*
sparseRate
;
goodFeaturesToTrack
(
from
,
features
,
maxFeatures
*
retainedCornersFraction
,
0.005
,
3
);
// Add points along the grid if not enough features
if
(
maxFeatures
>
features
.
size
()
)
{
const
unsigned
missingPoints
=
maxFeatures
-
features
.
size
();
const
unsigned
blockSize
=
sqrt
(
(
float
)
size
.
area
()
/
missingPoints
);
for
(
int
x
=
blockSize
/
2
;
x
<
size
.
width
;
x
+=
blockSize
)
for
(
int
y
=
blockSize
/
2
;
y
<
size
.
height
;
y
+=
blockSize
)
features
.
push_back
(
Point2f
(
x
,
y
)
);
}
std
::
vector
<
uchar
>
predictedStatus
;
std
::
vector
<
float
>
predictedError
;
calcOpticalFlowPyrLK
(
from
,
to
,
features
,
predictedFeatures
,
predictedStatus
,
predictedError
);
size_t
j
=
0
;
for
(
size_t
i
=
0
;
i
<
features
.
size
();
++
i
)
{
if
(
predictedStatus
[
i
]
)
{
features
[
j
]
=
features
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
++
j
;
}
}
features
.
resize
(
j
);
predictedFeatures
.
resize
(
j
);
}
void
OpticalFlowPCAFlow
::
removeOcclusions
(
Mat
&
from
,
Mat
&
to
,
std
::
vector
<
Point2f
>
&
features
,
std
::
vector
<
Point2f
>
&
predictedFeatures
)
const
{
std
::
vector
<
uchar
>
predictedStatus
;
std
::
vector
<
float
>
predictedError
;
std
::
vector
<
Point2f
>
backwardFeatures
;
calcOpticalFlowPyrLK
(
to
,
from
,
predictedFeatures
,
backwardFeatures
,
predictedStatus
,
predictedError
);
size_t
j
=
0
;
const
float
threshold
=
occlusionsThreshold
*
from
.
size
().
area
();
for
(
size_t
i
=
0
;
i
<
predictedFeatures
.
size
();
++
i
)
{
if
(
predictedStatus
[
i
]
)
{
Point2f
flowDiff
=
features
[
i
]
-
backwardFeatures
[
i
];
if
(
eNormSq
(
flowDiff
)
<
threshold
)
{
features
[
j
]
=
features
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
++
j
;
}
}
}
features
.
resize
(
j
);
predictedFeatures
.
resize
(
j
);
}
void
OpticalFlowPCAFlow
::
getSystem
(
OutputArray
AOut
,
OutputArray
b1Out
,
OutputArray
b2Out
,
const
std
::
vector
<
Point2f
>
&
features
,
const
std
::
vector
<
Point2f
>
&
predictedFeatures
,
const
Size
size
)
{
AOut
.
create
(
features
.
size
(),
basisSize
.
area
(),
CV_32F
);
b1Out
.
create
(
features
.
size
(),
1
,
CV_32F
);
b2Out
.
create
(
features
.
size
(),
1
,
CV_32F
);
Mat
A
=
AOut
.
getMat
();
Mat
b1
=
b1Out
.
getMat
();
Mat
b2
=
b2Out
.
getMat
();
const
Point2f
scale
=
Point2f
(
(
float
)
basisSize
.
width
/
(
float
)
size
.
width
,
(
float
)
basisSize
.
height
/
(
float
)
size
.
height
);
for
(
size_t
i
=
0
;
i
<
features
.
size
();
++
i
)
{
const
Point2f
p
=
Point2f
(
features
[
i
].
x
*
scale
.
x
,
features
[
i
].
y
*
scale
.
y
);
for
(
int
n1
=
0
;
n1
<
basisSize
.
width
;
++
n1
)
for
(
int
n2
=
0
;
n2
<
basisSize
.
height
;
++
n2
)
{
const
float
c
=
cos
(
(
n1
*
M_PI
/
basisSize
.
width
)
*
(
p
.
x
+
0.5
)
)
*
cos
(
(
n2
*
M_PI
/
basisSize
.
height
)
*
(
p
.
y
+
0.5
)
);
A
.
at
<
float
>
(
i
,
n1
*
basisSize
.
height
+
n2
)
=
c
;
}
const
Point2f
flow
=
predictedFeatures
[
i
]
-
features
[
i
];
b1
.
at
<
float
>
(
i
)
=
flow
.
x
;
b2
.
at
<
float
>
(
i
)
=
flow
.
y
;
}
}
template
<
typename
T
>
static
inline
int
mathSign
(
T
val
)
{
return
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
)
);
}
static
inline
void
symOrtho
(
double
a
,
double
b
,
double
&
c
,
double
&
s
,
double
&
r
)
...
...
@@ -200,15 +111,6 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
CV_Assert
(
b
.
type
()
==
CV_32F
);
xOut
.
create
(
n
,
1
,
CV_32F
);
double
anorm
=
0
;
const
double
dampsq
=
damp
*
damp
;
double
ddnorm
=
0
;
double
res2
=
0
;
double
xxnorm
=
0
;
double
z
=
0
;
double
cs2
=
-
1
;
double
sn2
=
0
;
Mat
v
(
n
,
1
,
CV_32F
,
0.0
f
);
Mat
u
=
b
;
Mat
x
=
xOut
.
getMat
();
...
...
@@ -216,11 +118,12 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
double
alfa
=
0
;
double
beta
=
cv
::
norm
(
u
,
NORM_L2
);
Mat
w
(
n
,
1
,
CV_32F
,
0.0
f
);
const
Mat
AT
=
A
.
t
();
if
(
beta
>
0
)
{
u
*=
1
/
beta
;
v
=
A
.
t
()
*
u
;
v
=
A
T
*
u
;
alfa
=
cv
::
norm
(
v
,
NORM_L2
);
}
...
...
@@ -232,10 +135,7 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
double
rhobar
=
alfa
;
double
phibar
=
beta
;
double
rnorm
=
beta
;
double
r1norm
=
rnorm
;
double
arnorm
=
alfa
*
beta
;
if
(
arnorm
==
0
)
if
(
alfa
*
beta
==
0
)
return
;
for
(
unsigned
itn
=
0
;
itn
<
iter_lim
;
++
itn
)
...
...
@@ -246,8 +146,7 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
if
(
beta
>
0
)
{
u
*=
1
/
beta
;
anorm
=
sqrt
(
anorm
*
anorm
+
alfa
*
alfa
+
beta
*
beta
+
damp
*
damp
);
v
=
A
.
t
()
*
u
-
beta
*
v
;
v
=
AT
*
u
-
beta
*
v
;
alfa
=
cv
::
norm
(
v
,
NORM_L2
);
if
(
alfa
>
0
)
v
=
(
1
/
alfa
)
*
v
;
...
...
@@ -255,8 +154,6 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
double
rhobar1
=
sqrt
(
rhobar
*
rhobar
+
damp
*
damp
);
double
cs1
=
rhobar
/
rhobar1
;
double
sn1
=
damp
/
rhobar1
;
double
psi
=
sn1
*
phibar
;
phibar
=
cs1
*
phibar
;
double
cs
,
sn
,
rho
;
...
...
@@ -266,37 +163,140 @@ static void solveLSQR( const Mat &A, const Mat &b, OutputArray xOut, const doubl
rhobar
=
-
cs
*
alfa
;
double
phi
=
cs
*
phibar
;
phibar
=
sn
*
phibar
;
double
tau
=
sn
*
phi
;
double
t1
=
phi
/
rho
;
double
t2
=
-
theta
/
rho
;
Mat
dk
=
(
1
/
rho
)
*
w
;
x
=
x
+
t1
*
w
;
w
=
v
+
t2
*
w
;
ddnorm
+=
cv
::
norm
(
dk
,
NORM_L2SQR
);
double
delta
=
sn2
*
rho
;
double
gambar
=
-
cs2
*
rho
;
double
rhs
=
phi
-
delta
*
z
;
double
gamma
=
sqrt
(
gambar
*
gambar
+
theta
*
theta
);
cs2
=
gambar
/
gamma
;
sn2
=
theta
/
gamma
;
z
=
rhs
/
gamma
;
xxnorm
=
xxnorm
+
z
*
z
;
double
res1
=
phibar
*
phibar
;
res2
=
res2
+
psi
*
psi
;
rnorm
=
sqrt
(
res1
+
res2
);
arnorm
=
alfa
*
std
::
abs
(
tau
);
double
r1sq
=
rnorm
*
rnorm
-
dampsq
*
xxnorm
;
r1norm
=
sqrt
(
std
::
abs
(
r1sq
)
);
if
(
r1sq
<
0
)
r1norm
=
-
r1norm
;
x
+=
t1
*
w
;
w
*=
t2
;
w
+=
v
;
}
}
void
OpticalFlowPCAFlow
::
findSparseFeatures
(
Mat
&
from
,
Mat
&
to
,
std
::
vector
<
Point2f
>
&
features
,
std
::
vector
<
Point2f
>
&
predictedFeatures
)
const
{
Size
size
=
from
.
size
();
const
unsigned
maxFeatures
=
size
.
area
()
*
sparseRate
;
goodFeaturesToTrack
(
from
,
features
,
maxFeatures
*
retainedCornersFraction
,
0.005
,
3
);
// Add points along the grid if not enough features
if
(
maxFeatures
>
features
.
size
()
)
{
const
unsigned
missingPoints
=
maxFeatures
-
features
.
size
();
const
unsigned
blockSize
=
sqrt
(
(
float
)
size
.
area
()
/
missingPoints
);
for
(
int
x
=
blockSize
/
2
;
x
<
size
.
width
;
x
+=
blockSize
)
for
(
int
y
=
blockSize
/
2
;
y
<
size
.
height
;
y
+=
blockSize
)
features
.
push_back
(
Point2f
(
x
,
y
)
);
}
std
::
vector
<
uchar
>
predictedStatus
;
std
::
vector
<
float
>
predictedError
;
calcOpticalFlowPyrLK
(
from
,
to
,
features
,
predictedFeatures
,
predictedStatus
,
predictedError
);
size_t
j
=
0
;
for
(
size_t
i
=
0
;
i
<
features
.
size
();
++
i
)
{
if
(
predictedStatus
[
i
]
)
{
features
[
j
]
=
features
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
++
j
;
}
}
features
.
resize
(
j
);
predictedFeatures
.
resize
(
j
);
}
void
OpticalFlowPCAFlow
::
removeOcclusions
(
Mat
&
from
,
Mat
&
to
,
std
::
vector
<
Point2f
>
&
features
,
std
::
vector
<
Point2f
>
&
predictedFeatures
)
const
{
std
::
vector
<
uchar
>
predictedStatus
;
std
::
vector
<
float
>
predictedError
;
std
::
vector
<
Point2f
>
backwardFeatures
;
calcOpticalFlowPyrLK
(
to
,
from
,
predictedFeatures
,
backwardFeatures
,
predictedStatus
,
predictedError
);
size_t
j
=
0
;
const
float
threshold
=
occlusionsThreshold
*
from
.
size
().
area
();
for
(
size_t
i
=
0
;
i
<
predictedFeatures
.
size
();
++
i
)
{
if
(
predictedStatus
[
i
]
)
{
Point2f
flowDiff
=
features
[
i
]
-
backwardFeatures
[
i
];
if
(
eNormSq
(
flowDiff
)
<
threshold
)
{
features
[
j
]
=
features
[
i
];
predictedFeatures
[
j
]
=
predictedFeatures
[
i
];
++
j
;
}
}
}
features
.
resize
(
j
);
predictedFeatures
.
resize
(
j
);
}
void
OpticalFlowPCAFlow
::
getSystem
(
OutputArray
AOut
,
OutputArray
b1Out
,
OutputArray
b2Out
,
const
std
::
vector
<
Point2f
>
&
features
,
const
std
::
vector
<
Point2f
>
&
predictedFeatures
,
const
Size
size
)
{
AOut
.
create
(
features
.
size
(),
basisSize
.
area
(),
CV_32F
);
b1Out
.
create
(
features
.
size
(),
1
,
CV_32F
);
b2Out
.
create
(
features
.
size
(),
1
,
CV_32F
);
Mat
A
=
AOut
.
getMat
();
Mat
b1
=
b1Out
.
getMat
();
Mat
b2
=
b2Out
.
getMat
();
for
(
size_t
i
=
0
;
i
<
features
.
size
();
++
i
)
{
const
Point2f
&
p
=
features
[
i
];
float
*
row
=
A
.
ptr
<
float
>
(
i
);
for
(
int
n1
=
0
;
n1
<
basisSize
.
width
;
++
n1
)
for
(
int
n2
=
0
;
n2
<
basisSize
.
height
;
++
n2
)
row
[
n1
*
basisSize
.
height
+
n2
]
=
cosf
(
(
n1
*
M_PI
/
size
.
width
)
*
(
p
.
x
+
0.5
)
)
*
cosf
(
(
n2
*
M_PI
/
size
.
height
)
*
(
p
.
y
+
0.5
)
);
const
Point2f
flow
=
predictedFeatures
[
i
]
-
features
[
i
];
b1
.
at
<
float
>
(
i
)
=
flow
.
x
;
b2
.
at
<
float
>
(
i
)
=
flow
.
y
;
}
}
static
void
applyCLAHE
(
Mat
&
img
)
{
Ptr
<
CLAHE
>
clahe
=
createCLAHE
();
clahe
->
setClipLimit
(
8
);
clahe
->
apply
(
img
,
img
);
}
static
void
reduceToFlow
(
const
Mat
&
w1
,
const
Mat
&
w2
,
Mat
&
flow
,
const
Size
&
basisSize
)
{
const
Size
size
=
flow
.
size
();
Mat
flowX
(
size
,
CV_32F
,
0.0
f
);
Mat
flowY
(
size
,
CV_32F
,
0.0
f
);
const
float
mult
=
sqrt
(
size
.
area
()
)
*
0.5
;
for
(
int
i
=
0
;
i
<
basisSize
.
width
;
++
i
)
for
(
int
j
=
0
;
j
<
basisSize
.
height
;
++
j
)
{
flowX
.
at
<
float
>
(
j
,
i
)
=
w1
.
at
<
float
>
(
i
*
basisSize
.
height
+
j
)
*
mult
;
flowY
.
at
<
float
>
(
j
,
i
)
=
w2
.
at
<
float
>
(
i
*
basisSize
.
height
+
j
)
*
mult
;
}
for
(
int
i
=
0
;
i
<
basisSize
.
height
;
++
i
)
{
flowX
.
at
<
float
>
(
i
,
0
)
*=
M_SQRT2
;
flowY
.
at
<
float
>
(
i
,
0
)
*=
M_SQRT2
;
}
for
(
int
i
=
0
;
i
<
basisSize
.
width
;
++
i
)
{
flowX
.
at
<
float
>
(
0
,
i
)
*=
M_SQRT2
;
flowY
.
at
<
float
>
(
0
,
i
)
*=
M_SQRT2
;
}
dct
(
flowX
,
flowX
,
DCT_INVERSE
);
dct
(
flowY
,
flowY
,
DCT_INVERSE
);
for
(
int
i
=
0
;
i
<
size
.
height
;
++
i
)
for
(
int
j
=
0
;
j
<
size
.
width
;
++
j
)
flow
.
at
<
Point2f
>
(
i
,
j
)
=
Point2f
(
flowX
.
at
<
float
>
(
i
,
j
),
flowY
.
at
<
float
>
(
i
,
j
)
);
}
void
OpticalFlowPCAFlow
::
calc
(
InputArray
I0
,
InputArray
I1
,
InputOutputArray
flowOut
)
{
const
Size
size
=
I0
.
size
();
...
...
@@ -325,6 +325,9 @@ void OpticalFlowPCAFlow::calc( InputArray I0, InputArray I1, InputOutputArray fl
CV_Assert
(
from
.
channels
()
==
1
);
CV_Assert
(
to
.
channels
()
==
1
);
// applyCLAHE(from);
// applyCLAHE(to);
std
::
vector
<
Point2f
>
features
,
predictedFeatures
;
findSparseFeatures
(
from
,
to
,
features
,
predictedFeatures
);
removeOcclusions
(
from
,
to
,
features
,
predictedFeatures
);
...
...
@@ -340,26 +343,13 @@ void OpticalFlowPCAFlow::calc( InputArray I0, InputArray I1, InputOutputArray fl
Mat
A
,
b1
,
b2
,
w1
,
w2
;
getSystem
(
A
,
b1
,
b2
,
features
,
predictedFeatures
,
size
);
// solve( A, b1, w1, DECOMP_CHOLESKY | DECOMP_NORMAL );
// solve( A, b2, w2, DECOMP_CHOLESKY | DECOMP_NORMAL );
// solve( A
1
, b1, w1, DECOMP_CHOLESKY | DECOMP_NORMAL );
// solve( A
2
, b2, w2, DECOMP_CHOLESKY | DECOMP_NORMAL );
solveLSQR
(
A
,
b1
,
w1
,
2
);
solveLSQR
(
A
,
b2
,
w2
,
2
);
Mat
flowSmall
(
basisSize
,
CV_32FC2
);
for
(
int
y
=
0
;
y
<
basisSize
.
height
;
++
y
)
for
(
int
x
=
0
;
x
<
basisSize
.
width
;
++
x
)
{
float
sumX
=
0
,
sumY
=
0
;
for
(
int
n1
=
0
;
n1
<
basisSize
.
width
;
++
n1
)
for
(
int
n2
=
0
;
n2
<
basisSize
.
height
;
++
n2
)
{
const
float
c
=
cos
(
(
n1
*
M_PI
/
basisSize
.
width
)
*
(
x
+
0.5
)
)
*
cos
(
(
n2
*
M_PI
/
basisSize
.
height
)
*
(
y
+
0.5
)
);
sumX
+=
c
*
w1
.
at
<
float
>
(
n1
*
basisSize
.
height
+
n2
);
sumY
+=
c
*
w2
.
at
<
float
>
(
n1
*
basisSize
.
height
+
n2
);
}
flowSmall
.
at
<
Point2f
>
(
y
,
x
)
=
Point2f
(
sumX
,
sumY
);
}
resize
(
flowSmall
,
flow
,
size
,
0
,
0
,
INTER_CUBIC
);
Mat
flowSmall
(
basisSize
*
16
,
CV_32FC2
);
reduceToFlow
(
w1
,
w2
,
flowSmall
,
basisSize
);
resize
(
flowSmall
,
flow
,
size
,
0
,
0
,
INTER_LINEAR
);
}
void
OpticalFlowPCAFlow
::
collectGarbage
()
{}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment