Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
62b781bc
Commit
62b781bc
authored
Jun 23, 2017
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1248 from arrybn:enable_googlenet_test
parents
e551d15c
b0d008ce
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
82 additions
and
73 deletions
+82
-73
dnn.cpp
modules/dnn/src/dnn.cpp
+81
-71
test_googlenet.cpp
modules/dnn/test/test_googlenet.cpp
+1
-2
No files found.
modules/dnn/src/dnn.cpp
View file @
62b781bc
...
@@ -324,7 +324,6 @@ struct LayerData
...
@@ -324,7 +324,6 @@ struct LayerData
//add logging info
//add logging info
params
.
name
=
name
;
params
.
name
=
name
;
params
.
type
=
type
;
params
.
type
=
type
;
skip
=
false
;
}
}
int
id
;
int
id
;
...
@@ -347,7 +346,6 @@ struct LayerData
...
@@ -347,7 +346,6 @@ struct LayerData
std
::
map
<
int
,
bool
>
skipFlags
;
std
::
map
<
int
,
bool
>
skipFlags
;
int
flag
;
int
flag
;
bool
skip
;
Ptr
<
Layer
>
getLayerInstance
()
Ptr
<
Layer
>
getLayerInstance
()
{
{
...
@@ -666,18 +664,39 @@ struct Net::Impl
...
@@ -666,18 +664,39 @@ struct Net::Impl
}
}
}
}
void
setUpNet
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
=
std
::
vector
<
LayerPin
>
()
)
void
clear
(
)
{
{
if
(
!
netWasAllocated
||
this
->
blobsToKeep
!=
blobsToKeep_
)
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
{
{
MapIdToLayerData
::
iterator
it
;
if
(
it
->
second
.
id
!=
0
)
{
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
it
->
second
.
outputBlobs
.
clear
();
it
->
second
.
internals
.
clear
();
}
it
->
second
.
skipFlags
.
clear
();
it
->
second
.
consumers
.
clear
();
Ptr
<
ConvolutionLayer
>
convLayer
=
it
->
second
.
layerInstance
.
dynamicCast
<
ConvolutionLayer
>
();
if
(
!
convLayer
.
empty
()
)
{
{
if
(
it
->
second
.
id
!=
0
)
{
convLayer
->
setActivation
(
Ptr
<
ActivationLayer
>
());
it
->
second
.
outputBlobs
.
clear
();
convLayer
->
setBatchNorm
(
Ptr
<
BatchNormLayer
>
());
it
->
second
.
internals
.
clear
();
}
}
Ptr
<
PoolingLayer
>
poolingLayer
=
it
->
second
.
layerInstance
.
dynamicCast
<
PoolingLayer
>
();
if
(
!
poolingLayer
.
empty
()
)
{
poolingLayer
->
computeMaxIdx
=
true
;
}
}
}
}
void
setUpNet
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
=
std
::
vector
<
LayerPin
>
())
{
if
(
!
netWasAllocated
||
this
->
blobsToKeep
!=
blobsToKeep_
)
{
clear
();
allocateLayers
(
blobsToKeep_
);
allocateLayers
(
blobsToKeep_
);
computeNetOutputLayers
();
computeNetOutputLayers
();
...
@@ -1005,69 +1024,41 @@ struct Net::Impl
...
@@ -1005,69 +1024,41 @@ struct Net::Impl
ld
.
flag
=
1
;
ld
.
flag
=
1
;
}
}
void
allocat
eLayers
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
)
void
fus
eLayers
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
)
{
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
it
->
second
.
flag
=
0
;
CV_Assert
(
!
layers
[
0
].
outputBlobs
.
empty
());
ShapesVec
inputShapes
;
for
(
int
i
=
0
;
i
<
layers
[
0
].
outputBlobs
.
size
();
i
++
)
{
CV_Assert
(
layers
[
0
].
outputBlobs
[
i
].
total
());
inputShapes
.
push_back
(
shape
(
layers
[
0
].
outputBlobs
[
i
]));
}
LayersShapesMap
layersShapes
;
getLayersShapes
(
inputShapes
,
layersShapes
);
blobManager
.
reset
();
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
++
it
)
{
const
LayerData
&
ld
=
it
->
second
;
blobManager
.
addReferences
(
ld
.
inputBlobsId
);
}
for
(
int
i
=
0
;
i
<
blobsToKeep_
.
size
();
i
++
)
{
blobManager
.
addReference
(
blobsToKeep_
[
i
]);
}
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
{
int
lid
=
it
->
first
;
allocateLayer
(
lid
,
layersShapes
);
}
// scan through all the layers. If there is convolution layer followed by the activation layer,
// scan through all the layers. If there is convolution layer followed by the activation layer,
// we try to embed this activation into the convolution and disable separate execution of the activation
// we try to embed this activation into the convolution and disable separate execution of the activation
std
::
vector
<
String
>
outnames
;
std
::
vector
<
String
>
outnames
;
std
::
set
<
LayerPin
>
pinsToKeep
(
blobsToKeep_
.
begin
(),
blobsToKeep_
.
end
());
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
{
{
int
lid
=
it
->
first
;
int
lid
=
it
->
first
;
LayerData
&
ld
=
layers
[
lid
];
LayerData
&
ld
=
layers
[
lid
];
if
(
ld
.
skip
)
if
(
ld
.
skip
Flags
[
DNN_BACKEND_DEFAULT
]
)
{
{
//printf("skipping %s\n", ld.layerInstance->name.c_str());
continue
;
continue
;
}
}
//printf("analyzing %s\n", ld.layerInstance->name.c_str());
if
(
ld
.
consumers
.
size
()
==
0
)
if
(
ld
.
consumers
.
size
()
==
0
)
outnames
.
push_back
(
ld
.
layerInstance
->
name
);
outnames
.
push_back
(
ld
.
layerInstance
->
name
);
Ptr
<
ConvolutionLayer
>
convLayer
=
ld
.
layerInstance
.
dynamicCast
<
ConvolutionLayer
>
();
Ptr
<
ConvolutionLayer
>
convLayer
=
ld
.
layerInstance
.
dynamicCast
<
ConvolutionLayer
>
();
if
(
!
convLayer
.
empty
()
&&
ld
.
consumers
.
size
()
==
1
)
LayerPin
lp
(
lid
,
0
);
if
(
!
convLayer
.
empty
()
&&
ld
.
consumers
.
size
()
==
1
&&
pinsToKeep
.
count
(
lp
)
==
0
)
{
{
LayerData
*
nextData
=
&
layers
[
ld
.
consumers
[
0
].
lid
];
LayerData
*
nextData
=
&
layers
[
ld
.
consumers
[
0
].
lid
];
Ptr
<
BatchNormLayer
>
nextBNormLayer
=
Ptr
<
BatchNormLayer
>
nextBNormLayer
=
nextData
->
layerInstance
.
dynamicCast
<
BatchNormLayer
>
();
nextData
->
layerInstance
.
dynamicCast
<
BatchNormLayer
>
();
if
(
!
nextBNormLayer
.
empty
()
)
LayerPin
lpNext
(
ld
.
consumers
[
0
].
lid
,
0
);
if
(
!
nextBNormLayer
.
empty
()
&&
pinsToKeep
.
count
(
lpNext
)
==
0
)
{
{
LayerData
*
bnormData
=
nextData
;
LayerData
*
bnormData
=
nextData
;
nextData
=
0
;
nextData
=
0
;
if
(
convLayer
->
setBatchNorm
(
nextBNormLayer
)
)
if
(
convLayer
->
setBatchNorm
(
nextBNormLayer
)
)
{
{
//printf("fused convolution (%s) and batch norm (%s)\n", convLayer->name.c_str(), nextBNormLayer->name.c_str())
;
bnormData
->
skipFlags
[
DNN_BACKEND_DEFAULT
]
=
true
;
bnormData
->
skip
=
true
;
ld
.
outputBlobs
=
layers
[
lpNext
.
lid
].
outputBlobs
;
if
(
bnormData
->
consumers
.
size
()
==
1
)
if
(
bnormData
->
consumers
.
size
()
==
1
)
nextData
=
&
layers
[
bnormData
->
consumers
[
0
].
lid
];
nextData
=
&
layers
[
bnormData
->
consumers
[
0
].
lid
];
}
}
...
@@ -1079,8 +1070,8 @@ struct Net::Impl
...
@@ -1079,8 +1070,8 @@ struct Net::Impl
if
(
!
nextActivLayer
.
empty
()
&&
convLayer
->
setActivation
(
nextActivLayer
)
)
if
(
!
nextActivLayer
.
empty
()
&&
convLayer
->
setActivation
(
nextActivLayer
)
)
{
{
//printf("fused convolution (%s) and activation (%s)\n", convLayer->name.c_str(), nextActivLayer->name.c_str())
;
nextData
->
skipFlags
[
DNN_BACKEND_DEFAULT
]
=
true
;
nextData
->
skip
=
true
;
ld
.
outputBlobs
=
layers
[
lpNext
.
lid
].
outputBlobs
;
}
}
}
}
Ptr
<
PoolingLayer
>
poolingLayer
=
ld
.
layerInstance
.
dynamicCast
<
PoolingLayer
>
();
Ptr
<
PoolingLayer
>
poolingLayer
=
ld
.
layerInstance
.
dynamicCast
<
PoolingLayer
>
();
...
@@ -1096,10 +1087,43 @@ struct Net::Impl
...
@@ -1096,10 +1087,43 @@ struct Net::Impl
poolingLayer
->
computeMaxIdx
=
false
;
poolingLayer
->
computeMaxIdx
=
false
;
}
}
}
}
/*printf("outputs: ");
}
for( size_t j = 0; j < outnames.size(); j++ )
printf("%s ", outnames[j].c_str());
void
allocateLayers
(
const
std
::
vector
<
LayerPin
>&
blobsToKeep_
)
printf("\n");*/
{
MapIdToLayerData
::
iterator
it
;
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
it
->
second
.
flag
=
0
;
CV_Assert
(
!
layers
[
0
].
outputBlobs
.
empty
());
ShapesVec
inputShapes
;
for
(
int
i
=
0
;
i
<
layers
[
0
].
outputBlobs
.
size
();
i
++
)
{
CV_Assert
(
layers
[
0
].
outputBlobs
[
i
].
total
());
inputShapes
.
push_back
(
shape
(
layers
[
0
].
outputBlobs
[
i
]));
}
LayersShapesMap
layersShapes
;
getLayersShapes
(
inputShapes
,
layersShapes
);
blobManager
.
reset
();
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
++
it
)
{
const
LayerData
&
ld
=
it
->
second
;
blobManager
.
addReferences
(
ld
.
inputBlobsId
);
}
for
(
int
i
=
0
;
i
<
blobsToKeep_
.
size
();
i
++
)
{
blobManager
.
addReference
(
blobsToKeep_
[
i
]);
}
for
(
it
=
layers
.
begin
();
it
!=
layers
.
end
();
it
++
)
{
int
lid
=
it
->
first
;
allocateLayer
(
lid
,
layersShapes
);
}
fuseLayers
(
blobsToKeep_
);
}
}
void
forwardLayer
(
LayerData
&
ld
)
void
forwardLayer
(
LayerData
&
ld
)
...
@@ -1109,7 +1133,7 @@ struct Net::Impl
...
@@ -1109,7 +1133,7 @@ struct Net::Impl
if
(
preferableBackend
==
DNN_BACKEND_DEFAULT
||
if
(
preferableBackend
==
DNN_BACKEND_DEFAULT
||
!
layer
->
supportBackend
(
preferableBackend
))
!
layer
->
supportBackend
(
preferableBackend
))
{
{
if
(
!
ld
.
skip
)
if
(
!
ld
.
skip
Flags
[
DNN_BACKEND_DEFAULT
]
)
layer
->
forward
(
ld
.
inputBlobs
,
ld
.
outputBlobs
,
ld
.
internals
);
layer
->
forward
(
ld
.
inputBlobs
,
ld
.
outputBlobs
,
ld
.
internals
);
}
}
else
if
(
!
ld
.
skipFlags
[
preferableBackend
])
else
if
(
!
ld
.
skipFlags
[
preferableBackend
])
...
@@ -1300,20 +1324,6 @@ void Net::connect(String _outPin, String _inPin)
...
@@ -1300,20 +1324,6 @@ void Net::connect(String _outPin, String _inPin)
impl
->
connect
(
outPin
.
lid
,
outPin
.
oid
,
inpPin
.
lid
,
inpPin
.
oid
);
impl
->
connect
(
outPin
.
lid
,
outPin
.
oid
,
inpPin
.
lid
,
inpPin
.
oid
);
}
}
//void Net::forward(LayerId toLayer)
//{
// if (!impl->netWasAllocated)
// {
// impl->setUpNet();
// }
// if (toLayer.isString() && toLayer.get<String>().empty())
// impl->forwardAll();
// else
// impl->forwardLayer(impl->getLayerData(toLayer));
//}
Mat
Net
::
forward
(
const
String
&
outputName
)
Mat
Net
::
forward
(
const
String
&
outputName
)
{
{
String
layerName
=
outputName
;
String
layerName
=
outputName
;
...
...
modules/dnn/test/test_googlenet.cpp
View file @
62b781bc
...
@@ -95,8 +95,7 @@ static void launchGoogleNetTest()
...
@@ -95,8 +95,7 @@ static void launchGoogleNetTest()
std
::
replace
(
filename
.
begin
(),
filename
.
end
(),
'/'
,
'#'
);
std
::
replace
(
filename
.
begin
(),
filename
.
end
(),
'/'
,
'#'
);
Mat
ref
=
blobFromNPY
(
_tf
(
"googlenet_"
+
filename
+
".npy"
));
Mat
ref
=
blobFromNPY
(
_tf
(
"googlenet_"
+
filename
+
".npy"
));
// TODO: disabled the check for now, because it conflicts with the layer fusion
normAssert
(
outs
[
i
],
ref
,
""
,
1E-4
,
1E-2
);
// normAssert(outs[i], ref, "", 1E-4, 1E-2);
}
}
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment