Commit 6259c1e4 authored by baudenri's avatar baudenri

Expose Error Cross-Covariance in Uncented Kalman Filters

For some applications it is useful to have an estimate of how uncertain
the specific variable is estimated. This could help to act accordingly
e.g. increase the measurement zone if the current estimate is very
uncertain. 
parent 5e008c87
......@@ -80,6 +80,11 @@ public:
*/
virtual Mat getMeasurementNoiseCov() const = 0;
/**
* @return the error cross-covariance matrix.
*/
virtual Mat getErrorCov() const = 0;
/**
* @return the current estimate of the state.
*/
......
......@@ -195,6 +195,7 @@ public:
Mat getProcessNoiseCov() const;
Mat getMeasurementNoiseCov() const;
Mat getErrorCov() const;
Mat getState() const;
......@@ -425,6 +426,11 @@ Mat AugmentedUnscentedKalmanFilterImpl::getMeasurementNoiseCov() const
return measurementNoiseCov.clone();
}
Mat AugmentedUnscentedKalmanFilterImpl::getErrorCov() const
{
return errorCov.clone();
}
Mat AugmentedUnscentedKalmanFilterImpl::getState() const
{
return state.clone();
......
......@@ -189,6 +189,7 @@ public:
// Get system parameters
Mat getProcessNoiseCov() const;
Mat getMeasurementNoiseCov() const;
Mat getErrorCov() const;
// Get the state estimate
Mat getState() const;
......@@ -400,6 +401,11 @@ Mat UnscentedKalmanFilterImpl::getMeasurementNoiseCov() const
return measurementNoiseCov.clone();
}
Mat UnscentedKalmanFilterImpl::getErrorCov() const
{
return errorCov.clone();
}
Mat UnscentedKalmanFilterImpl::getState() const
{
return state.clone();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment