Commit 5d5ec99c authored by Anguelos Nicolaou's avatar Anguelos Nicolaou

casted size_t values to std::vector<Mat>::const_iterator and fixed unreachable…

casted size_t values to std::vector<Mat>::const_iterator and fixed unreachable code in the cpp sample
parent 5c526f79
...@@ -44,8 +44,8 @@ int main(int argc, const char * argv[]){ ...@@ -44,8 +44,8 @@ int main(int argc, const char * argv[]){
if (argc < 3){ if (argc < 3){
std::cout<<getHelpStr(argv[0]); std::cout<<getHelpStr(argv[0]);
exit(1);
std::cout<<"Insufiecient parameters. Aborting!"<<std::endl; std::cout<<"Insufiecient parameters. Aborting!"<<std::endl;
exit(1);
} }
if (!fileExists("dictnet_vgg.caffemodel") || if (!fileExists("dictnet_vgg.caffemodel") ||
......
...@@ -42,7 +42,8 @@ protected: ...@@ -42,7 +42,8 @@ protected:
}else{//Assuming values are at the desired [0,1] range }else{//Assuming values are at the desired [0,1] range
tmpInput.convertTo(output, CV_32FC1); tmpInput.convertTo(output, CV_32FC1);
} }
}else if(input.channels()==1){ }else{
if(input.channels()==1){
if(input.depth()==CV_8U){ if(input.depth()==CV_8U){
input.convertTo(output, CV_32FC1,1/255.0); input.convertTo(output, CV_32FC1,1/255.0);
}else{//Assuming values are at the desired [0,1] range }else{//Assuming values are at the desired [0,1] range
...@@ -51,6 +52,7 @@ protected: ...@@ -51,6 +52,7 @@ protected:
}else{ }else{
CV_Error(Error::StsError,"Expecting images with either 1 or 3 channels"); CV_Error(Error::StsError,"Expecting images with either 1 or 3 channels");
} }
}
resize(output,output,this->inputGeometry_); resize(output,output,this->inputGeometry_);
Scalar dev,mean; Scalar dev,mean;
meanStdDev(output,mean,dev); meanStdDev(output,mean,dev);
...@@ -150,8 +152,8 @@ public: ...@@ -150,8 +152,8 @@ public:
Mat outputMat = classProbabilities.getMat(); Mat outputMat = classProbabilities.getMat();
for(size_t imgNum=0;imgNum<allImageVector.size();imgNum+=minibatchSize){ for(size_t imgNum=0;imgNum<allImageVector.size();imgNum+=minibatchSize){
size_t rangeEnd=imgNum+std::min<size_t>(allImageVector.size()-imgNum,minibatchSize); size_t rangeEnd=imgNum+std::min<size_t>(allImageVector.size()-imgNum,minibatchSize);
std::vector<Mat>::const_iterator from=allImageVector.begin()+imgNum; std::vector<Mat>::const_iterator from=std::vector<Mat>::const_iterator(allImageVector.begin()+imgNum);
std::vector<Mat>::const_iterator to=allImageVector.begin()+rangeEnd; std::vector<Mat>::const_iterator to=std::vector<Mat>::const_iterator(allImageVector.begin()+rangeEnd);
std::vector<Mat> minibatchInput(from,to); std::vector<Mat> minibatchInput(from,to);
classifyMiniBatch(minibatchInput,outputMat.rowRange(imgNum,rangeEnd)); classifyMiniBatch(minibatchInput,outputMat.rowRange(imgNum,rangeEnd));
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment