Commit 59099ecb authored by manuele's avatar manuele

adas fix

- lowered memory usage (now the train use ~3x less memory)
- improved speed (removed some bottlenecks and added fast_log)
- added support to grayscale images
- the LUV features are not computed if the image is grayscale (leads to
an improved detection rate)
- added various parameters (limit_ps, limit_bg, alpha, slidingStep,
is_grayscale)
- added detect() function for a better control of the resize factor
parent 6a61e07c
......@@ -48,15 +48,29 @@ static Mat visualize(const Mat &image, const vector<Rect> &objects)
}
return img;
}
static bool read_window_size(const char *str, int *rows, int *cols)
{
int pos = 0;
if( sscanf(str, "%dx%d%n", rows, cols, &pos) != 2 || str[pos] != '\0' ||
*rows <= 0 || *cols <= 0)
{
return false;
}
return true;
}
int main(int argc, char *argv[])
{
const string keys =
"{help | | print this message}"
"{model_filename | model.xml | filename for reading model}"
"{image_path | test.png | path to image for detection}"
"{out_image_path | out.png | path to image for output}"
"{threshold | 0.0 | threshold for cascade}"
"{help | | print this message}"
"{model_filename | model.xml | filename for reading model}"
"{image_path | test.png | path to image for detection}"
"{out_image_path | out.png | path to image for output}"
"{threshold | 0.0 | threshold for cascade}"
"{step | 8 | sliding window step}"
"{min_window_size | 40x40 | min window size in pixels}"
"{max_window_size | 300x300 | max window size in pixels}"
"{is_grayscale | false | read the image as grayscale}"
;
CommandLineParser parser(argc, argv, keys);
......@@ -71,7 +85,31 @@ int main(int argc, char *argv[])
string model_filename = parser.get<string>("model_filename");
string image_path = parser.get<string>("image_path");
string out_image_path = parser.get<string>("out_image_path");
bool is_grayscale = parser.get<bool>("is_grayscale");
float threshold = parser.get<float>("threshold");
int step = parser.get<float>("step");
int min_rows, min_cols, max_rows, max_cols;
string min_window_size = parser.get<string>("min_window_size");
if( !read_window_size(min_window_size.c_str(), &min_rows,
&min_cols) )
{
cerr << "Error reading min window size from `" << min_window_size << "`" << endl;
return 1;
}
string max_window_size = parser.get<string>("max_window_size");
if( !read_window_size(max_window_size.c_str(), &max_rows,
&max_cols) )
{
cerr << "Error reading max window size from `" << max_window_size << "`" << endl;
return 1;
}
int color;
if(is_grayscale == false)
color = cv::IMREAD_COLOR;
else
color = cv::IMREAD_GRAYSCALE;
if( !parser.check() )
......@@ -85,8 +123,10 @@ int main(int argc, char *argv[])
detector.read(fs["icfdetector"]);
fs.release();
vector<Rect> objects;
Mat img = imread(image_path);
detector.detect(img, objects, 1.1f, Size(40, 40),
Size(300, 300), threshold);
Mat img = imread(image_path, color);
std::vector<float> values;
detector.detect(img, objects, 1.1f, Size(min_cols, min_rows), Size(max_cols, max_rows), threshold, step, values);
imwrite(out_image_path, visualize(img, objects));
}
......@@ -27,6 +27,9 @@ using cv::imread;
using cv::CommandLineParser;
using cv::FileStorage;
#include <ctime> // std::time
#include <cstdlib> // std::rand, std::srand
#include <opencv2/xobjdetect.hpp>
using cv::xobjdetect::ICFDetectorParams;
......@@ -46,8 +49,11 @@ static bool read_model_size(const char *str, int *rows, int *cols)
return true;
}
static int randomPred (int i) { return std::rand()%i;}
int main(int argc, char *argv[])
{
const string keys =
"{help | | print this message}"
"{pos_path | pos | path to training object samples}"
......@@ -57,8 +63,15 @@ int main(int argc, char *argv[])
"{weak_count | 100 | number of weak classifiers in cascade}"
"{model_size | 40x40 | model size in pixels}"
"{model_filename | model.xml | filename for saving model}"
"{features_type | icf | features type, \"icf\" or \"acf\"}"
"{alpha | 0.02 | alpha value}"
"{is_grayscale | false | read the image as grayscale}"
"{use_fast_log | false | use fast log function}"
"{limit_ps | -1 | limit to positive samples (-1 means all)}"
"{limit_bg | -1 | limit to negative samples (-1 means all)}"
;
CommandLineParser parser(argc, argv, keys);
parser.about("FCW trainer");
......@@ -76,7 +89,14 @@ int main(int argc, char *argv[])
params.feature_count = parser.get<int>("feature_count");
params.weak_count = parser.get<int>("weak_count");
params.bg_per_image = parser.get<int>("bg_per_image");
params.features_type = parser.get<string>("features_type");
params.alpha = parser.get<float>("alpha");
params.is_grayscale = parser.get<bool>("is_grayscale");
params.use_fast_log = parser.get<bool>("use_fast_log");
int limit_ps = parser.get<int>("limit_ps");
int limit_bg = parser.get<int>("limit_bg");
string model_size = parser.get<string>("model_size");
if( !read_model_size(model_size.c_str(), &params.model_n_rows,
&params.model_n_cols) )
......@@ -97,20 +117,69 @@ int main(int argc, char *argv[])
return 1;
}
if( params.bg_per_image <= 0 )
if( params.features_type != "icf" && params.features_type != "acf" )
{
cerr << "bg_per_image must be positive number" << endl;
cerr << "features_type must be \"icf\" or \"acf\"" << endl;
return 1;
}
if( params.alpha <= 0 )
{
cerr << "alpha must be positive float number" << endl;
return 1;
}
if( !parser.check() )
{
parser.printErrors();
return 1;
}
std::vector<cv::String> pos_filenames;
glob(pos_path, pos_filenames);
std::vector<cv::String> bg_filenames;
glob(bg_path, bg_filenames);
if(limit_ps != -1 && (int)pos_filenames.size() > limit_ps)
pos_filenames.erase(pos_filenames.begin()+limit_ps, pos_filenames.end());
if(limit_bg != -1 && (int)bg_filenames.size() > limit_bg)
bg_filenames.erase(bg_filenames.begin()+limit_bg, bg_filenames.end());
//random pick input images
bool random_shuffle = false;
if(random_shuffle)
{
std::srand ( unsigned ( std::time(0) ) );
std::random_shuffle ( pos_filenames.begin(), pos_filenames.end(), randomPred );
std::random_shuffle ( bg_filenames.begin(), bg_filenames.end(), randomPred );
}
int samples_size = (int)((params.bg_per_image * bg_filenames.size()) + pos_filenames.size());
int features_size = params.feature_count;
int max_features_allowed = (int)(INT_MAX/(sizeof(int)* samples_size));
int max_samples_allowed = (int)(INT_MAX/(sizeof(int)* features_size));
if((int)((params.bg_per_image * bg_filenames.size()) + pos_filenames.size()) >max_samples_allowed)
{
std::cout<<std::endl<<"ERROR: exceeded maximum number of samples "<<std::endl<<std::endl;
std::cout<<"exceeded maximum number of samples (pos + neg) with "<<features_size<<" features is: "<<max_samples_allowed<<std::endl<<std::endl;
CV_Assert(false);
}
if(params.feature_count >max_features_allowed)
{
std::cout<<std::endl<<"ERROR: exceeded maximum number of features"<<std::endl<<std::endl;
std::cout<<"maximum number of features with "<<samples_size<<" samples is: "<<max_features_allowed<<std::endl<<std::endl;
CV_Assert(false);
}
std::cout<<pos_filenames.size()<<std::endl;
std::cout<<bg_filenames.size()<<std::endl;
ICFDetector detector;
detector.train(pos_filenames, bg_filenames, params);
ICFDetector detector;
detector.train(pos_path, bg_path, params);
FileStorage fs(model_filename, FileStorage::WRITE);
fs << "icfdetector";
detector.write(fs);
......
......@@ -165,9 +165,14 @@ Params for ICFDetector training.
int model_n_rows;
int model_n_cols;
int bg_per_image;
std::string features_type;
float alpha;
bool is_grayscale;
bool use_fast_log;
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
model_n_rows(56), model_n_cols(56), bg_per_image(5)
model_n_rows(56), model_n_cols(56), bg_per_image(5),
alpha(0.02), is_grayscale(false), use_fast_log(false)
{}
};
......@@ -181,7 +186,7 @@ ICFDetector::train
Train detector.
.. ocv:function:: void ICFDetector::train(const String& pos_path, const String& bg_path, ICFDetectorParams params = ICFDetectorParams())
.. ocv:function:: void ICFDetector::train(const std::vector<String>& pos_filenames, const std::vector<String>& bg_filenames, ICFDetectorParams params = ICFDetectorParams())
:param pos_path: path to folder with images of objects (wildcards like ``/my/path/*.png`` are allowed)
:param bg_path: path to folder with background images
......@@ -192,13 +197,20 @@ ICFDetector::detect
Detect objects on image.
.. ocv:function:: void ICFDetector::detect(const Mat& image, vector<Rect>& objects, float scaleFactor, Size minSize, Size maxSize, float threshold)
.. ocv:function:: void ICFDetector::detect(const Mat& image, vector<Rect>& objects, float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values)
.. ocv:function:: detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values);
:param image: image for detection
:param objects: output array of bounding boxes
:param scaleFactor: scale between layers in detection pyramid
:param minSize: min size of objects in pixels
:param maxSize: max size of objects in pixels
:param minScaleFactor: min factor by which the image will be resized
:param maxScaleFactor: max factor by which the image will be resized
:param factorStep: scaling factor is incremented each pyramid layer according to this parameter
:param slidingStep: sliding window step
:param values: output vector with values of positive samples
ICFDetector::write
------------------
......
......@@ -43,6 +43,7 @@ the use of this software, even if advised of the possibility of such damage.
#define __OPENCV_XOBJDETECT_XOBJDETECT_HPP__
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <vector>
#include <string>
......@@ -102,6 +103,8 @@ std::vector<std::vector<int> >
generateFeatures(Size window_size, const std::string& type,
int count = INT_MAX, int channel_count = 10);
//sort in-place of columns of the input matrix
void sort_columns_without_copy(Mat& m, Mat indices = Mat());
struct CV_EXPORTS WaldBoostParams
{
......@@ -127,8 +130,8 @@ public:
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
virtual std::vector<int> train(const Mat& /*data*/,
const Mat& /*labels*/) = 0;
virtual std::vector<int> train(Mat& /*data*/,
const Mat& /*labels*/, bool use_fast_log=false) = 0;
/* Predict object class given object that can compute object features
......@@ -157,9 +160,13 @@ struct CV_EXPORTS ICFDetectorParams
int model_n_rows;
int model_n_cols;
int bg_per_image;
std::string features_type;
float alpha;
bool is_grayscale;
bool use_fast_log;
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
model_n_rows(56), model_n_cols(56), bg_per_image(5)
model_n_rows(56), model_n_cols(56), bg_per_image(5), alpha(0.02), is_grayscale(false), use_fast_log(false)
{}
};
......@@ -167,18 +174,18 @@ class CV_EXPORTS ICFDetector
{
public:
ICFDetector(): waldboost_(), features_() {}
ICFDetector(): waldboost_(), features_(), ftype_() {}
/* Train detector
pos_path — path to folder with images of objects
pos_filenames — paths to objects images
bg_path — path to folder with background images
bg_filenames — path backgrounds images
params — parameters for detector training
*/
void train(const String& pos_path,
const String& bg_path,
void train(const std::vector<String>& pos_filenames,
const std::vector<String>& bg_filenames,
ICFDetectorParams params = ICFDetectorParams());
/* Detect object on image
......@@ -192,9 +199,35 @@ public:
minSize — min size of objects in pixels
maxSize — max size of objects in pixels
slidingStep — sliding window step
values — output vector with values of positive samples
*/
void detect(const Mat& image, std::vector<Rect>& objects,
float scaleFactor, Size minSize, Size maxSize, float threshold);
float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values);
/* Detect object on image
image — image for detection
object — output array of bounding boxes
minScaleFactor — min factor image will be resized
maxScaleFactor — max factor image will be resized
factorStep — scaling factor is incremented according to factorStep
slidingStep — sliding window step
values — output vector with values of positive samples
*/
void detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values);
/* Write detector to FileStorage */
void write(FileStorage &fs) const;
......@@ -207,6 +240,7 @@ private:
std::vector<std::vector<int> > features_;
int model_n_rows_;
int model_n_cols_;
std::string ftype_;
};
CV_EXPORTS void write(FileStorage& fs, String&, const ICFDetector& detector);
......
......@@ -33,10 +33,12 @@ public:
{-1, +1}
weights — matrix of sample weights, size 1 x N
visited_features: vector of already visited features (ignored in successive calls)
Returns chosen feature index. Feature enumeration starts from 0
*/
int train(const Mat& data, const Mat& labels, const Mat& weights);
int train(const Mat& data, const Mat& labels, const Mat& weights, const std::vector<int>& visited_features, bool use_fast_log = false);
/* Predict object class given
......
......@@ -120,18 +120,14 @@ void ICFFeatureEvaluatorImpl::setChannels(InputArrayOfArrays channels)
channels_.clear();
vector<Mat> ch;
channels.getMatVector(ch);
CV_Assert(ch.size() == 10);
for( size_t i = 0; i < ch.size(); ++i )
{
const Mat &channel = ch[i];
Mat integral_channel;
integral(channel, integral_channel, CV_32F);
Mat_<int> chan(integral_channel.rows, integral_channel.cols);
for( int row = 0; row < integral_channel.rows; ++row )
for( int col = 0; col < integral_channel.cols; ++col )
chan(row, col) = (int)integral_channel.at<float>(row, col);
channels_.push_back(chan.clone());
integral_channel.convertTo(integral_channel, CV_32S);
channels_.push_back(integral_channel.clone());
}
}
......@@ -140,11 +136,13 @@ void ICFFeatureEvaluatorImpl::setPosition(Size position)
position_ = position;
}
int ICFFeatureEvaluatorImpl::evaluate(size_t feature_ind) const
{
CV_Assert(channels_.size() == 10);
CV_Assert(feature_ind < features_.size());
/*
//following return is equal to this commented code, left here for readability. The new code runs much faster.
*
const vector<int>& feature = features_[feature_ind];
int x = feature[0] + position_.height;
int y = feature[1] + position_.width;
......@@ -153,6 +151,14 @@ int ICFFeatureEvaluatorImpl::evaluate(size_t feature_ind) const
int n = feature[4];
const Mat_<int>& ch = channels_[n];
return ch(y_to + 1, x_to + 1) - ch(y, x_to + 1) - ch(y_to + 1, x) + ch(y, x);
*/
CV_Assert(feature_ind < features_.size());
return *(channels_[features_[feature_ind][4]].ptr<int>()+((channels_[features_[feature_ind][4]].cols*(features_[feature_ind][3] + position_.width+1))+ features_[feature_ind][2] + position_.height + 1)) -
*(channels_[features_[feature_ind][4]].ptr<int>()+((channels_[features_[feature_ind][4]].cols*(features_[feature_ind][1] + position_.width))+ features_[feature_ind][2] + position_.height + 1)) -
*(channels_[features_[feature_ind][4]].ptr<int>()+((channels_[features_[feature_ind][4]].cols*(features_[feature_ind][3] + position_.width+1))+ features_[feature_ind][0] + position_.height)) +
*(channels_[features_[feature_ind][4]].ptr<int>()+((channels_[features_[feature_ind][4]].cols*(features_[feature_ind][1] + position_.width))+ features_[feature_ind][0] + position_.height));
}
class ACFFeatureEvaluatorImpl : public FeatureEvaluatorImpl
......@@ -173,7 +179,6 @@ void ACFFeatureEvaluatorImpl::setChannels(InputArrayOfArrays channels)
channels_.clear();
vector<Mat> ch;
channels.getMatVector(ch);
CV_Assert(ch.size() == 10);
for( size_t i = 0; i < ch.size(); ++i )
{
......@@ -203,7 +208,6 @@ void ACFFeatureEvaluatorImpl::setPosition(Size position)
int ACFFeatureEvaluatorImpl::evaluate(size_t feature_ind) const
{
CV_Assert(channels_.size() == 10);
CV_Assert(feature_ind < features_.size());
const vector<int>& feature = features_[feature_ind];
......@@ -271,13 +275,23 @@ vector<vector<int> > generateFeatures(Size window_size, const std::string& type,
void computeChannels(InputArray image, vector<Mat>& channels)
{
Mat src(image.getMat().rows, image.getMat().cols, CV_32FC3);
image.getMat().convertTo(src, CV_32FC3, 1./255);
Mat_<float> grad;
Mat luv, gray;
cvtColor(src, gray, CV_RGB2GRAY);
cvtColor(src, luv, CV_RGB2Luv);
Mat luv, gray, src;
if(image.getMat().channels() > 1)
{
src = Mat(image.getMat().rows, image.getMat().cols, CV_32FC3);
image.getMat().convertTo(src, CV_32FC3, 1./255);
cvtColor(src, gray, CV_RGB2GRAY);
cvtColor(src, luv, CV_RGB2Luv);
}
else
{
src = Mat(image.getMat().rows, image.getMat().cols, CV_32FC1);
image.getMat().convertTo(src, CV_32FC1, 1./255);
src.copyTo(gray);
}
Mat_<float> row_der, col_der;
Sobel(gray, row_der, CV_32F, 0, 1);
......@@ -304,10 +318,13 @@ void computeChannels(InputArray image, vector<Mat>& channels)
channels.clear();
Mat luv_channels[3];
split(luv, luv_channels);
for( int i = 0; i < 3; ++i )
channels.push_back(luv_channels[i]);
if(image.getMat().channels() > 1)
{
Mat luv_channels[3];
split(luv, luv_channels);
for( int i = 0; i < 3; ++i )
channels.push_back(luv_channels[i]);
}
channels.push_back(grad);
......
......@@ -58,34 +58,39 @@ using std::string;
using std::min;
using std::max;
namespace cv
{
namespace xobjdetect
{
void ICFDetector::train(const String& pos_path,
const String& bg_path,
void ICFDetector::train(const vector<String>& pos_filenames,
const vector<String>& bg_filenames,
ICFDetectorParams params)
{
vector<String> pos_filenames;
glob(pos_path, pos_filenames);
vector<String> bg_filenames;
glob(bg_path, bg_filenames);
int color;
if(params.is_grayscale == false)
color = IMREAD_COLOR;
else
color = IMREAD_GRAYSCALE;
model_n_rows_ = params.model_n_rows;
model_n_cols_ = params.model_n_cols;
ftype_ = params.features_type;
Size model_size(params.model_n_cols, params.model_n_rows);
vector<Mat> samples; /* positive samples + negative samples */
Mat sample, resized_sample;
int pos_count = 0;
for( size_t i = 0; i < pos_filenames.size(); ++i, ++pos_count )
{
cout << setw(6) << (i + 1) << "/" << pos_filenames.size() << "\r";
Mat img = imread(pos_filenames[i]);
Mat img = imread(pos_filenames[i], color);
resize(img, resized_sample, model_size);
samples.push_back(resized_sample.clone());
}
......@@ -96,18 +101,16 @@ void ICFDetector::train(const String& pos_path,
for( size_t i = 0; i < bg_filenames.size(); ++i )
{
cout << setw(6) << (i + 1) << "/" << bg_filenames.size() << "\r";
Mat img = imread(bg_filenames[i]);
Mat img = imread(bg_filenames[i], color);
for( int j = 0; j < params.bg_per_image; ++j, ++neg_count)
{
Rect r;
r.x = rng.uniform(0, img.cols);
r.width = rng.uniform(r.x + 1, img.cols);
r.y = rng.uniform(0, img.rows);
r.height = rng.uniform(r.y + 1, img.rows);
sample = img.colRange(r.x, r.width).rowRange(r.y, r.height);
resize(sample, resized_sample, model_size);
samples.push_back(resized_sample.clone());
r.x = rng.uniform(0, img.cols-model_size.width);
r.width = model_size.width;
r.y = rng.uniform(0, img.rows-model_size.height);
r.height = model_size.height;
sample = img.colRange(r.x, r.x + r.width).rowRange(r.y, r.y + r.height);
samples.push_back(sample.clone());
}
}
cout << "\n";
......@@ -118,9 +121,15 @@ void ICFDetector::train(const String& pos_path,
for( int i = pos_count; i < pos_count + neg_count; ++i )
labels(0, i) = -1;
vector<vector<int> > features = generateFeatures(model_size, "icf",
params.feature_count);
Ptr<FeatureEvaluator> evaluator = createFeatureEvaluator(features, "icf");
vector<vector<int> > features;
if(params.is_grayscale == false)
features = generateFeatures(model_size, params.features_type, params.feature_count, 10);
else
features = generateFeatures(model_size, params.features_type, params.feature_count, 7);
Ptr<FeatureEvaluator> evaluator = createFeatureEvaluator(features, params.features_type);
Mat_<int> data = Mat_<int>::zeros((int)features.size(), (int)samples.size());
Mat_<int> feature_col(1, (int)samples.size());
......@@ -141,13 +150,13 @@ void ICFDetector::train(const String& pos_path,
}
cout << "\n";
samples.clear();
WaldBoostParams wparams;
wparams.weak_count = params.weak_count;
wparams.alpha = 0.02f;
wparams.alpha = params.alpha;
waldboost_ = createWaldBoost(wparams);
vector<int> indices = waldboost_->train(data, labels);
vector<int> indices = waldboost_->train(data, labels, params.use_fast_log);
cout << "indices: ";
for( size_t i = 0; i < indices.size(); ++i )
cout << indices[i] << " ";
......@@ -163,6 +172,7 @@ void ICFDetector::write(FileStorage& fs) const
fs << "{";
fs << "model_n_rows" << model_n_rows_;
fs << "model_n_cols" << model_n_cols_;
fs << "ftype" << String(ftype_.c_str());
fs << "waldboost";
waldboost_->write(fs);
fs << "features" << "[";
......@@ -177,8 +187,11 @@ void ICFDetector::write(FileStorage& fs) const
void ICFDetector::read(const FileNode& node)
{
waldboost_ = Ptr<WaldBoost>(createWaldBoost(WaldBoostParams()));
String f_temp;
node["model_n_rows"] >> model_n_rows_;
node["model_n_cols"] >> model_n_cols_;
f_temp = (String)node["ftype"];
this->ftype_ = (string)f_temp.c_str();
waldboost_->read(node["waldboost"]);
FileNode features = node["features"];
features_.clear();
......@@ -191,49 +204,99 @@ void ICFDetector::read(const FileNode& node)
}
void ICFDetector::detect(const Mat& img, vector<Rect>& objects,
float scaleFactor, Size minSize, Size maxSize, float threshold)
float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values)
{
float scale_from = min(model_n_cols_ / (float)maxSize.width,
model_n_rows_ / (float)maxSize.height);
float scale_to = max(model_n_cols_ / (float)minSize.width,
model_n_rows_ / (float)minSize.height);
objects.clear();
Ptr<FeatureEvaluator> evaluator = createFeatureEvaluator(features_, "icf");
Ptr<FeatureEvaluator> evaluator = createFeatureEvaluator(features_, ftype_);
Mat rescaled_image;
int step = 8;
vector<Mat> channels;
for( float scale = scale_from; scale < scale_to + 0.001; scale *= scaleFactor )
{
cout << "scale " << scale << endl;
int new_width = int(img.cols * scale);
new_width -= new_width % 4;
int new_height = int(img.rows * scale);
new_height -= new_height % 4;
resize(img, rescaled_image, Size(new_width, new_height));
computeChannels(rescaled_image, channels);
evaluator->setChannels(channels);
for( int row = 0; row <= rescaled_image.rows - model_n_rows_; row += step)
for( int row = 0; row <= rescaled_image.rows - model_n_rows_; row += slidingStep)
{
for( int col = 0; col <= rescaled_image.cols - model_n_cols_;
col += slidingStep )
{
evaluator->setPosition(Size(row, col));
float value = waldboost_->predict(evaluator);
if( value > threshold )
{
values.push_back(value);
int x = (int)(col / scale);
int y = (int)(row / scale);
int width = (int)(model_n_cols_ / scale);
int height = (int)(model_n_rows_ / scale);
objects.push_back(Rect(x, y, width, height));
}
}
}
}
}
void ICFDetector::detect(const Mat& img, vector<Rect>& objects,
float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values)
{
if(factorStep <= 0)
{
CV_Error(CV_StsBadArg, "factorStep must be > 0");
CV_Assert(false);
}
objects.clear();
Ptr<FeatureEvaluator> evaluator = createFeatureEvaluator(features_, ftype_);
Mat rescaled_image;
vector<Mat> channels;
for( float scale = minScaleFactor; scale < maxScaleFactor + 0.001; scale += factorStep )
{
if(scale < 1.0)
resize(img, rescaled_image, Size(),scale, scale, INTER_AREA);
else if (scale > 1.0)
resize(img, rescaled_image, Size(),scale, scale, INTER_CUBIC);
else //scale == 1.0
img.copyTo(rescaled_image);
computeChannels(rescaled_image, channels);
evaluator->setChannels(channels);
for( int row = 0; row <= rescaled_image.rows - model_n_rows_; row += slidingStep)
{
for( int col = 0; col <= rescaled_image.cols - model_n_cols_;
col += step )
col += slidingStep )
{
evaluator->setPosition(Size(row, col));
float value = waldboost_->predict(evaluator);
if( value > threshold )
{
values.push_back(value);
int x = (int)(col / scale);
int y = (int)(row / scale);
int width = (int)(model_n_cols_ / scale);
int height = (int)(model_n_rows_ / scale);
cout << value << " " << x << " " << y << " " << width << " "
<< height << endl;
objects.push_back(Rect(x, y, width, height));
}
}
}
}
}
void write(FileStorage& fs, String&, const ICFDetector& detector)
......
......@@ -61,7 +61,27 @@ static void cumsum(const Mat_<float>& src, Mat_<float> dst)
}
}
int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
//fast log implementation. A bit less accurate but ~5x faster
inline float fast_log2 (float val)
{
int * const exp_ptr = reinterpret_cast <int *> (&val);
int x = *exp_ptr;
const int log_2 = ((x >> 23) & 255) - 128;
x &= ~(255 << 23);
x += 127 << 23;
*exp_ptr = x;
val = ((-1.0f/3) * val + 2) * val - 2.0f/3; // (1)
return (val + log_2);
}
inline float fast_log (const float &val)
{
return (fast_log2 (val) * 0.69314718f);
}
int Stump::train(const Mat& data, const Mat& labels, const Mat& weights, const std::vector<int>& visited_features, bool use_fast_log)
{
CV_Assert(labels.rows == 1 && labels.cols == data.cols);
CV_Assert(weights.rows == 1 && weights.cols == data.cols);
......@@ -95,8 +115,11 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
/* For every feature */
for( int row = 0; row < data.rows; ++row )
{
for( int col = 0; col < data.cols; ++col )
d(0, col) = data.at<int>(row, col);
if(std::find(visited_features.begin(), visited_features.end(), row) != visited_features.end()) {
//feature discarded
continue;
}
data.row(row).copyTo(d.row(0));
sortIdx(d, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
......@@ -141,8 +164,16 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right);
h_pos = .5f * log((pos_right + eps) / (pos_wrong + eps));
h_neg = .5f * log((neg_wrong + eps) / (neg_right + eps));
if(use_fast_log)
{
h_pos = .5f * fast_log((pos_right + eps) / (pos_wrong + eps));
h_neg = .5f * fast_log((neg_wrong + eps) / (neg_right + eps));
}
else
{
h_pos = .5f * log((pos_right + eps) / (pos_wrong + eps));
h_neg = .5f * log((neg_wrong + eps) / (neg_right + eps));
}
if( err < min_err )
{
......
......@@ -50,10 +50,93 @@ using std::cout;
using std::endl;
namespace cv
{
namespace xobjdetect
{
//sort in-place of columns of the input matrix
void sort_columns_without_copy(Mat& m, Mat indices)
{
if(indices.data == 0)
sortIdx(m, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
Mat indices_of_indices;
sortIdx(indices, indices_of_indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
std::vector<bool> visited;
for(int c = 0; c<m.cols; c++)
visited.push_back(false);
int ind_v = 0;
Mat temp_column = Mat();
int next = 0;
Mat column;
while(ind_v < m.cols)
{
if(temp_column.data == 0)
{
(m.col(indices_of_indices.at<int>(0,ind_v))).copyTo(column);
}
else
{
temp_column.copyTo(column);
}
if(indices_of_indices.at<int>(0,next) != next) //value is in the right place
{
//store the next value to change
(m.col(indices_of_indices.at<int>(0,next))).copyTo(temp_column);
//insert the value to change at the right place
column.copyTo(m.col(indices_of_indices.at<int>(0,next)));
//find the index of the next value to change
next = indices_of_indices.at<int>(0,next);
//if the idenx is not visited yet
if(visited[next] == false)
{
//then mark it as visited, it will be computed in the next round
visited[next] = true;
}
else
{
//find first non visited index
int i = 0;
while(visited[i] == true && i<(int)visited.size())
{
i++;
}
ind_v = i;
next = i;
temp_column = Mat();
}
}
else // value is already at the right place
{
visited[next] = true;
int i = 0;
while(visited[i] == true && i<(int)visited.size())
{
i++;
}
next = i;
temp_column = Mat();
ind_v = i;
}
}
}
class WaldBoostImpl : public WaldBoost
{
......@@ -63,8 +146,8 @@ public:
params_(params)
{}
virtual std::vector<int> train(const Mat& data,
const Mat& labels);
virtual std::vector<int> train(Mat& data,
const Mat& labels, bool use_fast_log=false);
virtual float predict(
const Ptr<FeatureEvaluator>& feature_evaluator) const;
......@@ -138,13 +221,12 @@ void WaldBoostImpl::write(FileStorage& fs) const
}
vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
vector<int> WaldBoostImpl::train(Mat& data, const Mat& labels_, bool use_fast_log)
{
CV_Assert(labels_.rows == 1 && labels_.cols == data_.cols);
CV_Assert(data_.rows >= params_.weak_count);
CV_Assert(labels_.rows == 1 && labels_.cols == data.cols);
CV_Assert(data.rows >= params_.weak_count);
Mat labels, data;
data_.copyTo(data);
Mat labels;
labels_.copyTo(labels);
bool null_data = true;
......@@ -175,18 +257,18 @@ vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
feature_indices_pool.push_back(ind);
vector<int> feature_indices;
vector<int> visited_features;
Mat_<float> trace = Mat_<float>::zeros(labels.rows, labels.cols);
stumps_.clear();
thresholds_.clear();
for( int i = 0; i < params_.weak_count; ++i)
{
cout << "stage " << i << endl;
{
Stump s;
int feature_ind = s.train(data, labels, weights);
cout << "feature_ind " << feature_ind << endl;
int feature_ind = s.train(data, labels, weights, visited_features, use_fast_log);
stumps_.push_back(s);
int ind = feature_indices_pool[feature_ind];
feature_indices_pool.erase(feature_indices_pool.begin() + feature_ind);
//we don't need to erase the feature index anymore, because we ignore them if already visited
//feature_indices_pool.erase(feature_indices_pool.begin() + feature_ind);
feature_indices.push_back(ind);
// Recompute weights
......@@ -198,12 +280,13 @@ vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
weights.at<float>(0, col) *= exp(-label * h);
}
// Erase row for feature in data
Mat fixed_data;
fixed_data.push_back(data.rowRange(0, feature_ind));
fixed_data.push_back(data.rowRange(feature_ind + 1, data.rows));
// set to zero row for feature in data
for(int jc = 0; jc<data.cols; jc++)
{
data.at<int>(feature_ind, jc) = 0;
}
visited_features.push_back(feature_ind);
data = fixed_data;
// Normalize weights
......@@ -218,7 +301,6 @@ vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
sortIdx(trace, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
Mat new_weights = Mat_<float>::zeros(weights.rows, weights.cols);
Mat new_labels = Mat_<int>::zeros(labels.rows, labels.cols);
Mat new_data = Mat_<int>::zeros(data.rows, data.cols);
Mat new_trace;
for( int col = 0; col < new_weights.cols; ++col )
{
......@@ -226,15 +308,12 @@ vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
weights.at<float>(0, indices.at<int>(0, col));
new_labels.at<int>(0, col) =
labels.at<int>(0, indices.at<int>(0, col));
for( int row = 0; row < new_data.rows; ++row )
{
new_data.at<int>(row, col) =
data.at<int>(row, indices.at<int>(0, col));
}
}
//sort in-place to save memory
sort_columns_without_copy(data, indices);
sort(trace, new_trace, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
// Compute threshold for trace
/*
int col = 0;
......@@ -262,19 +341,16 @@ vector<int> WaldBoostImpl::train(const Mat& data_, const Mat& labels_)
}
thresholds_.push_back(new_trace.at<float>(0, max_col));
cout << "threshold " << *(thresholds_.end() - 1) << endl;
cout << "col " << max_col << " size " << data.cols << endl;
// Drop samples below threshold
new_data.colRange(max_col, new_data.cols).copyTo(data);
//uses Rois instead of copyTo to save memory
data = data(Rect(max_col, 0, data.cols - max_col, data.rows));
new_trace.colRange(max_col, new_trace.cols).copyTo(trace);
new_weights.colRange(max_col, new_weights.cols).copyTo(weights);
new_labels.colRange(max_col, new_labels.cols).copyTo(labels);
pos_count = count(labels, +1);
neg_count = count(labels, -1);
cout << "pos_count " << pos_count << "; neg_count " << neg_count << endl;
if( data.cols < 2 || neg_count == 0)
{
......@@ -293,6 +369,7 @@ float WaldBoostImpl::predict(
{
int value = feature_evaluator->evaluate(i);
trace += stumps_[i].predict(value);
if( trace < thresholds_[i] )
return -1;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment