Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
5841dc00
Commit
5841dc00
authored
May 21, 2014
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add asad interface prototype
parent
079ff5c0
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
213 additions
and
0 deletions
+213
-0
acffeature.hpp
modules/asad/include/acffeature.hpp
+79
-0
icfdetector.hpp
modules/asad/include/icfdetector.hpp
+52
-0
waldboost.hpp
modules/asad/include/waldboost.hpp
+82
-0
No files found.
modules/asad/include/acffeature.hpp
0 → 100644
View file @
5841dc00
class
ACFFeature
{
public
:
/* Initialize feature with zero row and col */
ACFFeature
();
/* Initialize feature with given row and col */
ACFFeature
(
int
row
,
int
col
);
private
:
/* Feature row */
int
row_
;
/* Feature col */
int
col_
;
};
/* Save ACFFeature to FileStorage */
cv
::
FileStorage
&
operator
<<
(
cv
::
FileStorage
&
out
,
const
ACFFeature
&
feature
);
/* Load ACFFeature from FileStorage */
cv
::
FileStorage
&
operator
>>
(
cv
::
FileStorage
&
in
,
ACFFeature
&
feature
);
/* Compute channel pyramid for acf features
image — image, for which pyramid should be computed
params — pyramid computing parameters
Returns computed channels in vectors N x CH,
N — number of scales (outer vector),
CH — number of channels (inner vectors)
*/
std
::
vector
<
std
::
vector
<
cv
::
Mat_
<
int
>>>
computeChannels
(
const
cv
::
Mat
&
image
,
const
ScaleParams
&
params
);
class
ACFFeatureEvaluator
{
public
:
/* Construct evaluator, set features to evaluate */
ACFFeatureEvaluator
(
const
std
::
vector
<
ACFFeature
>&
features
);
/* Set channels for feature evaluation */
void
setChannels
(
const
std
::
vector
<
cv
::
Mat_
<
int
>>&
channels
);
/* Set window position */
void
setPosition
(
Size
position
);
/* Evaluate feature with given index for current channels
and window position */
int
evaluate
(
size_t
feature_ind
)
const
;
/* Evaluate all features for current channels and window position
Returns matrix-column of features
*/
cv
::
Mat_
<
int
>
evaluateAll
()
const
;
private
:
/* Features to evaluate */
std
::
vector
<
ACFFeature
>
features_
;
/* Channels for feature evaluation */
std
::
vector
<
cv
::
Mat_
<
int
>>
channels
/* Channels window position */
Size
position_
;
};
/* Generate acf features
window_size — size of window in which features should be evaluated
count — number of features to generate.
Max number of features is min(count, # possible distinct features)
seed — random number generator initializer
Returns vector of distinct acf features
*/
std
::
vector
<
ACFFeature
>
generateFeatures
(
Size
window_size
,
size_t
count
=
UINT_MAX
,
int
seed
=
0
);
\ No newline at end of file
modules/asad/include/icfdetector.hpp
0 → 100644
View file @
5841dc00
class
ICFDetector
{
public
:
/* Initialize detector
min_obj_size — min possible object size on image in pixels (rows x cols)
max_obj_size — max possible object size on image in pixels (rows x cols)
scales_per_octave — number of images in pyramid while going
from scale x to scale 2x. Affects on speed
and quality of the detector
*/
ICFDetector
(
Size
min_obj_size
,
Size
max_obj_size
,
int
scales_per_octave
=
8
);
/* Load detector from file, return true on success, false otherwise */
bool
load
(
const
std
::
string
&
filename
);
/* Run detector on single image
image — image for detection
bboxes — output array of bounding boxes in format
Rect(row_from, col_from, n_rows, n_cols)
confidence_values — output array of confidence values from 0 to 1.
One value per bbox — confidence of detector that corresponding
bbox contatins object
*/
void
detect
(
const
Mat
&
image
,
std
::
vector
<
Rect
>&
bboxes
,
std
::
vector
<
float
>&
confidence_values
)
const
;
/* Train detector
image_filenames — filenames of images for training
labelling — vector of object bounding boxes per every image
params — parameters for detector training
*/
void
train
(
const
std
::
vector
<
std
::
string
>&
image_filenames
,
const
std
::
vector
<
std
::
vector
<
Rect
>>&
labelling
,
const
ICFDetectorParams
&
params
=
ICFDetectorParams
());
/* Save detector in file, return true on success, false otherwise */
bool
save
(
const
std
::
string
&
filename
);
};
\ No newline at end of file
modules/asad/include/waldboost.hpp
0 → 100644
View file @
5841dc00
class
Stump
{
public
:
/* Train stump for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
Returns chosen feature index. Feature enumeration starts from 0
*/
int
train
(
const
cv
::
Mat_
<
int
>&
data
,
const
cv
::
Mat_
<
int
>&
labels
);
/* Predict object class given
value — feature value. Feature must be the same as chose during training
stump
Returns object class from {-1, +1}
*/
int
predict
(
int
value
);
private
:
/* Stump decision threshold */
int
threshold_
;
/* Stump polarity, can be from {-1, +1} */
int
polarity_
;
/* Stump decision rule:
h(value) = polarity * sign(value - threshold)
*/
};
/* Save Stump to FileStorage */
cv
::
FileStorage
&
operator
<<
(
cv
::
FileStorage
&
out
,
const
Stump
&
classifier
);
/* Load Stump from FileStorage */
cv
::
FileStorage
&
operator
>>
(
cv
::
FileStorage
&
in
,
Stump
&
classifier
);
class
WaldBoost
{
public
:
/* Initialize WaldBoost cascade with default of specified parameters */
WaldBoost
(
const
WaldBoostParams
&
=
WaldBoostParams
());
/* Train WaldBoost cascade for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
std
::
vector
<
int
>
train
(
const
cv
::
Mat_
<
int
>&
data
,
const
cv
::
Mat_
<
int
>&
labels
);
/* Predict object class given object that can compute object features
feature_evaluator — object that can compute features by demand
Returns confidence_value — measure of confidense that object
is from class +1
*/
float
predict
(
const
ACFFeatureEvaluator
&
feature_evaluator
);
private
:
/* Parameters for cascade training */
WaldBoostParams
params_
;
/* Stumps in cascade */
std
::
vector
<
Stump
>
stumps_
;
/* Weight for stumps in cascade linear combination */
std
::
vector
<
float
>
stump_weights_
;
/* Rejection thresholds for linear combination at every stump evaluation */
std
::
vector
<
float
>
thresholds_
;
};
/* Save WaldBoost to FileStorage */
cv
::
FileStorage
&
operator
<<
(
cv
::
FileStorage
&
out
,
const
WaldBoost
&
classifier
);
/* Load WaldBoost from FileStorage */
cv
::
FileStorage
&
operator
>>
(
cv
::
FileStorage
&
in
,
WaldBoost
&
classifier
);
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment