@@ -12,7 +12,7 @@ Here are instructions on how to install Tesseract on your machine (Linux or Mac;
Tesseract installation instruction (Linux, Mac)
-----------------------------------------------
0. Linux users may try to install tesseract-3.03-rc1 (or later) and leptonica-1.70 (or later) with the corresponding developement packages using their package manager. Mac users may try brew. The instructions below are for those who wants to build tesseract from source.
0. Linux users may try to install tesseract-3.03-rc1 (or later) and leptonica-1.70 (or later) with the corresponding development packages using their package manager. Mac users may try brew. The instructions below are for those who wants to build tesseract from source.
1. download leptonica 1.70 tarball (helper image processing library, used by tesseract. Later versions might work too):
staticPtr<OCRHMMDecoder>create(constPtr<OCRHMMDecoder::ClassifierCallback>classifier,// The character classifier with built in feature extractor
conststd::string&vocabulary,// The language vocabulary (chars when ascii english text)
conststd::string&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
decoder_modemode=OCR_DECODER_VITERBI);// HMM Decoding algorithm (only Viterbi for the moment)
CV_WRAPstaticPtr<OCRHMMDecoder>create(constPtr<OCRHMMDecoder::ClassifierCallback>classifier,// The character classifier with built in feature extractor
constString&vocabulary,// The language vocabulary (chars when ascii english text)
constString&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
intmode=OCR_DECODER_VITERBI);// HMM Decoding algorithm (only Viterbi for the moment)
/** @brief Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
constString&vocabulary,// The language vocabulary (chars when ascii english text)
constString&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
intmode=OCR_DECODER_VITERBI,// HMM Decoding algorithm (only Viterbi for the moment)
intclassifier=OCR_KNN_CLASSIFIER);// The character classifier type
...
...
@@ -371,7 +371,7 @@ CV_EXPORTS_W Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifier(const S
/** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon).
*
* @param vocabulary The language vocabulary (chars when ascii english text).
* @param vocabulary The language vocabulary (chars when ASCII English text).
*
* @param lexicon The list of words that are expected to be found in a particular image.
*
...
...
@@ -466,7 +466,7 @@ public:
@param classifier The character classifier with built in feature extractor.
@param vocabulary The language vocabulary (chars when ascii english text). vocabulary.size()
@param vocabulary The language vocabulary (chars when ASCII English text). vocabulary.size()
must be equal to the number of classes of the classifier.
@param transition_probabilities_table Table with transition probabilities between character
...
...
@@ -481,22 +481,22 @@ public:
@param beam_size Size of the beam in Beam Search algorithm.
*/
staticPtr<OCRBeamSearchDecoder>create(constPtr<OCRBeamSearchDecoder::ClassifierCallback>classifier,// The character classifier with built in feature extractor
conststd::string&vocabulary,// The language vocabulary (chars when ascii english text)
conststd::string&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
decoder_modemode=OCR_DECODER_VITERBI,// HMM Decoding algorithm (only Viterbi for the moment)
intbeam_size=500);// Size of the beam in Beam Search algorithm
CV_WRAPstaticPtr<OCRBeamSearchDecoder>create(constPtr<OCRBeamSearchDecoder::ClassifierCallback>classifier,// The character classifier with built in feature extractor
constString&vocabulary,// The language vocabulary (chars when ascii english text)
constString&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
intmode=OCR_DECODER_VITERBI,// HMM Decoding algorithm (only Viterbi for the moment)
intbeam_size=500);// Size of the beam in Beam Search algorithm
...
...
@@ -506,12 +506,12 @@ public:
*/
CV_WRAPstaticPtr<OCRBeamSearchDecoder>create(constString&filename,// The character classifier file
constString&vocabulary,// The language vocabulary (chars when ascii english text)
constString&vocabulary,// The language vocabulary (chars when ASCII English text)
// size() must be equal to the number of classes
InputArraytransition_probabilities_table,// Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
InputArrayemission_probabilities_table,// Table with observation emission probabilities
// cols == rows == vocabulari.size()
// cols == rows == vocabulary.size()
intmode=OCR_DECODER_VITERBI,// HMM Decoding algorithm (only Viterbi for the moment)
//Feedback loop of detected lines to region extraction ... tries to recover missmatches in the region decomposition step by extracting regions in the neighbourhood of a valid sequence and checking if they are consistent with its line estimates
//Feedback loop of detected lines to region extraction ... tries to recover mismatches in the region decomposition step by extracting regions in the neighbourhood of a valid sequence and checking if they are consistent with its line estimates