Commit 55294f52 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #245 from kurnianggoro/KCF

Added KCF Tracker Framework
parents 7f4c627e cce4f7b3
/*---------------STEP 1---------------------*/
/* modify this file
* opencv2/tracking/tracker.hpp
* and put several lines of snippet similar to
* the following:
*/
/*------------------------------------------*/
class CV_EXPORTS_W TrackerKCF : public Tracker
{
public:
struct CV_EXPORTS Params
{
Params();
void read( const FileNode& /*fn*/ );
void write( FileStorage& /*fs*/ ) const;
};
/** @brief Constructor
@param parameters KCF parameters TrackerKCF::Params
*/
BOILERPLATE_CODE("KCF",TrackerKCF);
};
/*---------------STEP 2---------------------*/
/* modify this file
* src/tracker.cpp
* add one line in function
* Ptr<Tracker> Tracker::create( const String& trackerType )
*/
/*------------------------------------------*/
Ptr<Tracker> Tracker::create( const String& trackerType )
{
BOILERPLATE_CODE("MIL",TrackerMIL);
BOILERPLATE_CODE("BOOSTING",TrackerBoosting);
BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow);
BOILERPLATE_CODE("TLD",TrackerTLD);
BOILERPLATE_CODE("KCF",TrackerKCF); // add this line!
return Ptr<Tracker>();
}
/*---------------STEP 3---------------------*/
/* make a new file and paste the snippet below
* and modify it according to your needs.
* also make sure to put the LICENSE part.
* src/trackerKCF.cpp
*/
/*------------------------------------------*/
/*---------------------------
| TrackerKCFModel
|---------------------------*/
namespace cv{
/**
* \brief Implementation of TrackerModel for MIL algorithm
*/
class TrackerKCFModel : public TrackerModel{
public:
TrackerKCFModel(TrackerKCF::Params /*params*/){}
~TrackerKCFModel(){}
protected:
void modelEstimationImpl( const std::vector<Mat>& responses ){}
void modelUpdateImpl(){}
};
} /* namespace cv */
/*---------------------------
| TrackerKCF
|---------------------------*/
namespace cv{
/*
* Prototype
*/
class TrackerKCFImpl : public TrackerKCF{
public:
TrackerKCFImpl( const TrackerKCF::Params &parameters = TrackerKCF::Params() );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
protected:
bool initImpl( const Mat& image, const Rect2d& boundingBox );
bool updateImpl( const Mat& image, Rect2d& boundingBox );
TrackerKCF::Params params;
};
/*
* Constructor
*/
Ptr<TrackerKCF> TrackerKCF::createTracker(const TrackerKCF::Params &parameters){
return Ptr<TrackerKCFImpl>(new TrackerKCFImpl(parameters));
}
TrackerKCFImpl::TrackerKCFImpl( const TrackerKCF::Params &parameters ) :
params( parameters )
{
isInit = false;
}
void TrackerKCFImpl::read( const cv::FileNode& fn ){
params.read( fn );
}
void TrackerKCFImpl::write( cv::FileStorage& fs ) const{
params.write( fs );
}
bool TrackerKCFImpl::initImpl( const Mat& image, const Rect2d& boundingBox ){
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params));
return true;
}
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){return true;}
/*
* Parameters
*/
TrackerKCF::Params::Params(){
}
void TrackerKCF::Params::read( const cv::FileNode& fn ){
}
void TrackerKCF::Params::write( cv::FileStorage& fs ) const{
}
} /* namespace cv */
...@@ -67,3 +67,29 @@ ...@@ -67,3 +67,29 @@
year={2013}, year={2013},
organization={IEEE} organization={IEEE}
} }
@article{KCF,
title = {High-Speed Tracking with Kernelized Correlation Filters},
journal = {Pattern Analysis and Machine Intelligence, IEEE Transactions on},
author = {Henriques, J. F. and Caseiro, R. and Martins, P. and Batista, J.},
year = {2015},
doi = {10.1109/TPAMI.2014.2345390},
}
@inproceedings{KCF_ECCV,
title = {Exploiting the Circulant Structure of Tracking-by-detection with Kernels},
author = {Henriques, J. F. and Caseiro, R. and Martins, P. and Batista, J.},
booktitle = {proceedings of the European Conference on Computer Vision},
year = {2012},
}
@INPROCEEDINGS{KCF_CN,
author={Danelljan, M. and Khan, F.S. and Felsberg, M. and van de Weijer, J.},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on},
title={Adaptive Color Attributes for Real-Time Visual Tracking},
year={2014},
month={June},
pages={1090-1097},
keywords={computer vision;feature extraction;image colour analysis;image representation;image sequences;adaptive color attributes;benchmark color sequences;color features;color representations;computer vision;image description;real-time visual tracking;tracking-by-detection framework;Color;Computational modeling;Covariance matrices;Image color analysis;Kernel;Target tracking;Visualization;Adaptive Dimensionality Reduction;Appearance Model;Color Features;Visual Tracking},
doi={10.1109/CVPR.2014.143},
}
...@@ -1189,6 +1189,60 @@ class CV_EXPORTS_W TrackerTLD : public Tracker ...@@ -1189,6 +1189,60 @@ class CV_EXPORTS_W TrackerTLD : public Tracker
BOILERPLATE_CODE("TLD",TrackerTLD); BOILERPLATE_CODE("TLD",TrackerTLD);
}; };
/** @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
* This tracking method is an implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN).
* The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html>
* as well as the matlab implementation. For more information about KCF with color-names features, please refer to
* <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>.
*/
class CV_EXPORTS_W TrackerKCF : public Tracker
{
public:
/**
* \brief Feature type to be used in the tracking grayscale, colornames, compressed color-names
* The modes available now:
- "GRAY" -- Use grayscale values as the feature
- "CN" -- Color-names feature
*/
enum MODE {GRAY, CN, CN2};
struct CV_EXPORTS Params
{
/**
* \brief Constructor
*/
Params();
/**
* \brief Read parameters from file, currently unused
*/
void read( const FileNode& /*fn*/ );
/**
* \brief Read parameters from file, currently unused
*/
void write( FileStorage& /*fs*/ ) const;
double sigma; //!< gaussian kernel bandwidth
double lambda; //!< regularization
double interp_factor; //!< linear interpolation factor for adaptation
double output_sigma_factor; //!< spatial bandwidth (proportional to target)
double pca_learning_rate; //!< compression learning rate
bool resize; //!< activate the resize feature to improve the processing speed
bool split_coeff; //!< split the training coefficients into two matrices
bool wrap_kernel; //!< wrap around the kernel values
bool compress_feature; //!< activate the pca method to compress the features
int max_patch_size; //!< threshold for the ROI size
int compressed_size; //!< feature size after compression
MODE descriptor; //!< descriptor type
};
/** @brief Constructor
@param parameters KCF parameters TrackerKCF::Params
*/
BOILERPLATE_CODE("KCF",TrackerKCF);
};
//! @} //! @}
} /* namespace cv */ } /* namespace cv */
......
/*----------------------------------------------
* Usage:
* example_tracking_kcf <video_name>
*
* example:
* example_tracking_kcf Bolt/img/%04.jpg
* example_tracking_kcf faceocc2.webm
*--------------------------------------------------*/
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <cstring>
using namespace std;
using namespace cv;
class BoxExtractor {
public:
Rect2d extract(Mat img);
Rect2d extract(const std::string& windowName, Mat img, bool showCrossair = true);
struct handlerT{
bool isDrawing;
Rect2d box;
Mat image;
// initializer list
handlerT(): isDrawing(false) {};
}params;
private:
static void mouseHandler(int event, int x, int y, int flags, void *param);
void opencv_mouse_callback( int event, int x, int y, int , void *param );
};
int main( int argc, char** argv ){
// show help
if(argc<2){
cout<<
" Usage: example_tracking_kcf <video_name>\n"
" examples:\n"
" example_tracking_kcf Bolt/img/%04.jpg\n"
" example_tracking_kcf faceocc2.webm\n"
<< endl;
return 0;
}
// ROI selector
BoxExtractor box;
// create the tracker
Ptr<Tracker> tracker = Tracker::create( "KCF" );
// set input video
std::string video = argv[1];
VideoCapture cap(video);
Mat frame;
// get bounding box
cap >> frame;
Rect2d roi=box.extract("tracker",frame);
//quit if ROI was not selected
if(roi.width==0 || roi.height==0)
return 0;
// initialize the tracker
tracker->init(frame,roi);
// do the tracking
printf("Start the tracking process, press ESC to quit.\n");
for ( ;; ){
// get frame from the video
cap >> frame;
// stop the program if no more images
if(frame.rows==0 || frame.cols==0)
break;
// update the tracking result
tracker->update(frame,roi);
// draw the tracked object
rectangle( frame, roi, Scalar( 255, 0, 0 ), 2, 1 );
// show image with the tracked object
imshow("tracker",frame);
//quit on ESC button
if(waitKey(1)==27)break;
}
}
void BoxExtractor::mouseHandler(int event, int x, int y, int flags, void *param){
BoxExtractor *self =static_cast<BoxExtractor*>(param);
self->opencv_mouse_callback(event,x,y,flags,param);
}
void BoxExtractor::opencv_mouse_callback( int event, int x, int y, int , void *param ){
handlerT * data = (handlerT*)param;
switch( event ){
// update the selected bounding box
case EVENT_MOUSEMOVE:
if( data->isDrawing ){
data->box.width = x-data->box.x;
data->box.height = y-data->box.y;
}
break;
// start to select the bounding box
case EVENT_LBUTTONDOWN:
data->isDrawing = true;
data->box = cvRect( x, y, 0, 0 );
break;
// cleaning up the selected bounding box
case EVENT_LBUTTONUP:
data->isDrawing = false;
if( data->box.width < 0 ){
data->box.x += data->box.width;
data->box.width *= -1;
}
if( data->box.height < 0 ){
data->box.y += data->box.height;
data->box.height *= -1;
}
break;
}
}
Rect2d BoxExtractor::extract(Mat img){
return extract("Bounding Box Extractor", img);
}
Rect2d BoxExtractor::extract(const std::string& windowName, Mat img, bool showCrossair){
int key=0;
// show the image and give feedback to user
imshow(windowName,img);
printf("Select an object to track and then press SPACE/BACKSPACE/ENTER button!\n");
// copy the data, rectangle should be drawn in the fresh image
params.image=img.clone();
// select the object
setMouseCallback( windowName, mouseHandler, (void *)&params );
// end selection process on SPACE (32) BACKSPACE (27) or ENTER (13)
while(!(key==32 || key==27 || key==13)){
// draw the selected object
rectangle(
params.image,
params.box,
Scalar(255,0,0),2,1
);
// draw cross air in the middle of bounding box
if(showCrossair){
// horizontal line
line(
params.image,
Point((int)params.box.x,(int)(params.box.y+params.box.height/2)),
Point((int)(params.box.x+params.box.width),(int)(params.box.y+params.box.height/2)),
Scalar(255,0,0),2,1
);
// vertical line
line(
params.image,
Point((int)(params.box.x+params.box.width/2),(int)params.box.y),
Point((int)(params.box.x+params.box.width/2),(int)(params.box.y+params.box.height)),
Scalar(255,0,0),2,1
);
}
// show the image bouding box
imshow(windowName,params.image);
// reset the image
params.image=img.clone();
//get keyboard event
key=waitKey(1);
}
return params.box;
}
This diff is collapsed.
...@@ -110,6 +110,7 @@ Ptr<Tracker> Tracker::create( const String& trackerType ) ...@@ -110,6 +110,7 @@ Ptr<Tracker> Tracker::create( const String& trackerType )
BOILERPLATE_CODE("BOOSTING",TrackerBoosting); BOILERPLATE_CODE("BOOSTING",TrackerBoosting);
BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow); BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow);
BOILERPLATE_CODE("TLD",TrackerTLD); BOILERPLATE_CODE("TLD",TrackerTLD);
BOILERPLATE_CODE("KCF",TrackerKCF);
return Ptr<Tracker>(); return Ptr<Tracker>();
} }
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment