Commit 53e34260 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #1022 from Sahloul:features/python_wrapper/surface_matching_step

parents 4924bb8d 9cd57681
......@@ -148,7 +148,7 @@ protected:
double angle_step, angle_step_radians, distance_step;
double sampling_step_relative, angle_step_relative, distance_step_relative;
Mat sampled_pc, ppf;
int num_ref_points, ppf_step;
int num_ref_points;
hashtable_int* hash_table;
THash* hash_nodes;
......
......@@ -50,7 +50,7 @@ static void subtractColumns(Mat srcPC, double mean[3])
for (int i=0; i<height; i++)
{
float *row = (float*)(&srcPC.data[i*srcPC.step]);
float *row = srcPC.ptr<float>(i);
{
row[0]-=(float)mean[0];
row[1]-=(float)mean[1];
......@@ -68,7 +68,7 @@ static void computeMeanCols(Mat srcPC, double mean[3])
for (int i=0; i<height; i++)
{
const float *row = (float*)(&srcPC.data[i*srcPC.step]);
const float *row = srcPC.ptr<float>(i);
{
mean1 += (double)row[0];
mean2 += (double)row[1];
......@@ -100,7 +100,7 @@ static double computeDistToOrigin(Mat srcPC)
for (int i=0; i<height; i++)
{
const float *row = (float*)(&srcPC.data[i*srcPC.step]);
const float *row = srcPC.ptr<float>(i);
dist += sqrt(row[0]*row[0]+row[1]*row[1]+row[2]*row[2]);
}
......@@ -203,11 +203,11 @@ static void minimizePointToPlaneMetric(Mat Src, Mat Dst, Mat& X)
#endif
for (int i=0; i<Src.rows; i++)
{
const double *srcPt = (double*)&Src.data[i*Src.step];
const double *dstPt = (double*)&Dst.data[i*Dst.step];
const double *srcPt = Src.ptr<double>(i);
const double *dstPt = Dst.ptr<double>(i);
const double *normals = &dstPt[3];
double *bVal = (double*)&b.data[i*b.step];
double *aRow = (double*)&A.data[i*A.step];
double *bVal = b.ptr<double>(i);
double *aRow = A.ptr<double>(i);
const double sub[3]={dstPt[0]-srcPt[0], dstPt[1]-srcPt[1], dstPt[2]-srcPt[2]};
......@@ -382,13 +382,13 @@ int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, double& residu
while ( (!(fval_perc<(1+TolP) && fval_perc>(1-TolP))) && i<MaxIterationsPyr)
{
size_t di=0, selInd = 0;
uint di=0, selInd = 0;
queryPCFlann(flann, Src_Moved, Indices, Distances);
for (di=0; di<numElSrc; di++)
{
newI[di] = (int)di;
newI[di] = di;
newJ[di] = indices[di];
}
......@@ -455,17 +455,17 @@ int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, double& residu
if (selInd)
{
Mat Src_Match = Mat((int)selInd, srcPCT.cols, CV_64F);
Mat Dst_Match = Mat((int)selInd, srcPCT.cols, CV_64F);
Mat Src_Match = Mat(selInd, srcPCT.cols, CV_64F);
Mat Dst_Match = Mat(selInd, srcPCT.cols, CV_64F);
for (di=0; di<selInd; di++)
{
const int indModel = indicesModel[di];
const int indScene = indicesScene[di];
const float *srcPt = (float*)&srcPCT.data[indModel*srcPCT.step];
const float *dstPt = (float*)&dstPC0.data[indScene*dstPC0.step];
double *srcMatchPt = (double*)&Src_Match.data[di*Src_Match.step];
double *dstMatchPt = (double*)&Dst_Match.data[di*Dst_Match.step];
const float *srcPt = srcPCT.ptr<float>(indModel);
const float *dstPt = dstPC0.ptr<float>(indScene);
double *srcMatchPt = Src_Match.ptr<double>(di);
double *dstMatchPt = Dst_Match.ptr<double>(di);
int ci=0;
for (ci=0; ci<srcPCT.cols; ci++)
......
......@@ -86,7 +86,7 @@ Mat loadPLYSimple(const char* fileName, int withNormals)
for (int i = 0; i < numVertices; i++)
{
float* data = (float*)(&cloud.data[i*cloud.step[0]]);
float* data = cloud.ptr<float>(i);
if (withNormals)
{
ifs >> data[0] >> data[1] >> data[2] >> data[3] >> data[4] >> data[5];
......@@ -148,7 +148,7 @@ void writePLY(Mat PC, const char* FileName)
for ( int pi = 0; pi < pointNum; ++pi )
{
const float* point = (float*)(&PC.data[ pi*PC.step ]);
const float* point = PC.ptr<float>(pi);
outFile << point[0] << " "<<point[1]<<" "<<point[2];
......@@ -202,7 +202,7 @@ void writePLYVisibleNormals(Mat PC, const char* FileName)
for (int pi = 0; pi < pointNum; ++pi)
{
const float* point = (float*)(&PC.data[pi*PC.step]);
const float* point = PC.ptr<float>(pi);
outFile << point[0] << " " << point[1] << " " << point[2];
......@@ -295,7 +295,7 @@ Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrang
//#pragma omp parallel for
for (int i=0; i<pc.rows; i++)
{
const float* point = (float*)(&pc.data[i * pc.step]);
const float* point = pc.ptr<float>(i);
// quantize a point
const int xCell =(int) ((float)numSamplesDim*(point[0]-xrange[0])/xr);
......@@ -342,7 +342,7 @@ Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrang
for (int j=0; j<cn; j++)
{
const int ptInd = curCell[j];
float* point = (float*)(&pc.data[ptInd * pc.step]);
float* point = pc.ptr<float>(ptInd);
const double dx = point[0]-xc;
const double dy = point[1]-yc;
const double dz = point[2]-zc;
......@@ -380,7 +380,7 @@ Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrang
for (int j=0; j<cn; j++)
{
const int ptInd = curCell[j];
float* point = (float*)(&pc.data[ptInd * pc.step]);
float* point = pc.ptr<float>(ptInd);
px += (double)point[0];
py += (double)point[1];
......@@ -399,7 +399,7 @@ Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrang
}
float *pcData = (float*)(&pcSampled.data[c*pcSampled.step[0]]);
float *pcData = pcSampled.ptr<float>(c);
pcData[0]=(float)px;
pcData[1]=(float)py;
pcData[2]=(float)pz;
......@@ -542,8 +542,8 @@ Mat transformPCPose(Mat pc, double Pose[16])
#endif
for (int i=0; i<pc.rows; i++)
{
const float *pcData = (float*)(&pc.data[i*pc.step]);
float *pcDataT = (float*)(&pct.data[i*pct.step]);
const float *pcData = pc.ptr<float>(i);
float *pcDataT = pct.ptr<float>(i);
const float *n1 = &pcData[3];
float *nT = &pcDataT[3];
......@@ -738,7 +738,7 @@ CV_EXPORTS int computeNormalsPC3d(const Mat& PC, Mat& PCNormals, const int NumNe
for (i=0; i<PC.rows; i++)
{
const float* src = (float*)(&PC.data[i*PC.step]);
const float* src = PC.ptr<float>(i);
float* dst = (float*)(&dataset[i*3]);
dst[0] = src[0];
......@@ -763,7 +763,7 @@ CV_EXPORTS int computeNormalsPC3d(const Mat& PC, Mat& PCNormals, const int NumNe
{
double C[3][3], mu[4];
const float* pci = &dataset[i*3];
float* pcr = (float*)(&PCNormals.data[i*PCNormals.step]);
float* pcr = PCNormals.ptr<float>(i);
double nr[3];
int* indLocal = &indices[i*NumNeighbors];
......
......@@ -41,7 +41,7 @@
#include "precomp.hpp"
#include "hash_murmur.hpp"
namespace cv
namespace cv
{
namespace ppf_match_3d
{
......@@ -252,8 +252,6 @@ void PPF3DDetector::trainModel(const Mat &PC)
int numPPF = sampled.rows*sampled.rows;
ppf = Mat(numPPF, PPF_LENGTH, CV_32FC1);
int ppfStep = (int)ppf.step;
int sampledStep = (int)sampled.step;
// TODO: Maybe I could sample 1/5th of them here. Check the performance later.
int numRefPoints = sampled.rows;
......@@ -268,7 +266,7 @@ void PPF3DDetector::trainModel(const Mat &PC)
// since this is just a training part.
for (int i=0; i<numRefPoints; i++)
{
float* f1 = (float*)(&sampled.data[i * sampledStep]);
float* f1 = sampled.ptr<float>(i);
const double p1[4] = {f1[0], f1[1], f1[2], 0};
const double n1[4] = {f1[3], f1[4], f1[5], 0};
......@@ -278,7 +276,7 @@ void PPF3DDetector::trainModel(const Mat &PC)
// cannnot compute the ppf with myself
if (i!=j)
{
float* f2 = (float*)(&sampled.data[j * sampledStep]);
float* f2 = sampled.ptr<float>(j);
const double p2[4] = {f2[0], f2[1], f2[2], 0};
const double n2[4] = {f2[3], f2[4], f2[5], 0};
......@@ -286,8 +284,7 @@ void PPF3DDetector::trainModel(const Mat &PC)
computePPFFeatures(p1, n1, p2, n2, f);
KeyType hashValue = hashPPF(f, angle_step_radians, distanceStep);
double alpha = computeAlpha(p1, n1, p2);
unsigned int corrInd = i*numRefPoints+j;
unsigned int ppfInd = corrInd*ppfStep;
unsigned int ppfInd = i*numRefPoints+j;
THash* hashNode = &hash_nodes[i*numRefPoints+j];
hashNode->id = hashValue;
......@@ -296,7 +293,7 @@ void PPF3DDetector::trainModel(const Mat &PC)
hashtableInsertHashed(hashTable, hashValue, (void*)hashNode);
float* ppfRow = (float*)(&(ppf.data[ ppfInd ]));
float* ppfRow = ppf.ptr<float>(ppfInd);
ppfRow[0] = (float)f[0];
ppfRow[1] = (float)f[1];
ppfRow[2] = (float)f[2];
......@@ -309,7 +306,6 @@ void PPF3DDetector::trainModel(const Mat &PC)
angle_step = angle_step_radians;
distance_step = distanceStep;
hash_table = hashTable;
ppf_step = ppfStep;
num_ref_points = numRefPoints;
sampled_pc = sampled;
trained = true;
......@@ -513,7 +509,7 @@ void PPF3DDetector::match(const Mat& pc, std::vector<Pose3DPtr>& results, const
unsigned int refIndMax = 0, alphaIndMax = 0;
unsigned int maxVotes = 0;
float* f1 = (float*)(&sampled.data[i * sampled.step]);
float* f1 = sampled.ptr<float>(i);
const double p1[4] = {f1[0], f1[1], f1[2], 0};
const double n1[4] = {f1[3], f1[4], f1[5], 0};
double *row2, *row3, tsg[3]={0}, Rsg[9]={0}, RInv[9]={0};
......@@ -532,7 +528,7 @@ void PPF3DDetector::match(const Mat& pc, std::vector<Pose3DPtr>& results, const
{
if (i!=j)
{
float* f2 = (float*)(&sampled.data[j * sampled.step]);
float* f2 = sampled.ptr<float>(j);
const double p2[4] = {f2[0], f2[1], f2[2], 0};
const double n2[4] = {f2[3], f2[4], f2[5], 0};
double p2t[4], alpha_scene;
......@@ -565,7 +561,7 @@ void PPF3DDetector::match(const Mat& pc, std::vector<Pose3DPtr>& results, const
THash* tData = (THash*) node->data;
int corrI = (int)tData->i;
int ppfInd = (int)tData->ppfInd;
float* ppfCorrScene = (float*)(&ppf.data[ppfInd]);
float* ppfCorrScene = ppf.ptr<float>(ppfInd);
double alpha_model = (double)ppfCorrScene[PPF_LENGTH-1];
double alpha = alpha_model - alpha_scene;
......@@ -620,7 +616,7 @@ void PPF3DDetector::match(const Mat& pc, std::vector<Pose3DPtr>& results, const
};
// TODO : Compute pose
const float* fMax = (float*)(&sampled_pc.data[refIndMax * sampled_pc.step]);
const float* fMax = sampled_pc.ptr<float>(refIndMax);
const double pMax[4] = {fMax[0], fMax[1], fMax[2], 1};
const double nMax[4] = {fMax[3], fMax[4], fMax[5], 1};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment