Commit 53da3059 authored by abratchik's avatar abratchik

Fix java wrappers for Text module

parent 78fabfe6
set(the_description "Text Detection and Recognition") set(the_description "Text Detection and Recognition")
ocv_define_module(text opencv_ml opencv_imgproc opencv_core opencv_features2d OPTIONAL opencv_highgui WRAP python) ocv_define_module(text opencv_ml opencv_imgproc opencv_core opencv_features2d OPTIONAL opencv_highgui WRAP python java)
if(NOT CMAKE_CROSSCOMPILING OR OPENCV_FIND_TESSERACT) if(NOT CMAKE_CROSSCOMPILING OR OPENCV_FIND_TESSERACT)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_CURRENT_SOURCE_DIR}/cmake) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
......
...@@ -193,10 +193,10 @@ public: ...@@ -193,10 +193,10 @@ public:
loadClassifierNM1, e.g. from file in samples/cpp/trained_classifierNM1.xml loadClassifierNM1, e.g. from file in samples/cpp/trained_classifierNM1.xml
@param thresholdDelta : Threshold step in subsequent thresholds when extracting the component tree @param thresholdDelta : Threshold step in subsequent thresholds when extracting the component tree
@param minArea : The minimum area (% of image size) allowed for retreived ER's @param minArea : The minimum area (% of image size) allowed for retreived ER's
@param minArea : The maximum area (% of image size) allowed for retreived ER's @param maxArea : The maximum area (% of image size) allowed for retreived ER's
@param minProbability : The minimum probability P(er|character) allowed for retreived ER's @param minProbability : The minimum probability P(er|character) allowed for retreived ER's
@param nonMaxSuppression : Whenever non-maximum suppression is done over the branch probabilities @param nonMaxSuppression : Whenever non-maximum suppression is done over the branch probabilities
@param minProbability : The minimum probability difference between local maxima and local minima ERs @param minProbabilityDiff : The minimum probability difference between local maxima and local minima ERs
The component tree of the image is extracted by a threshold increased step by step from 0 to 255, The component tree of the image is extracted by a threshold increased step by step from 0 to 255,
incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of
...@@ -227,6 +227,24 @@ features: hole area ratio, convex hull ratio, and number of outer inflexion poin ...@@ -227,6 +227,24 @@ features: hole area ratio, convex hull ratio, and number of outer inflexion poin
CV_EXPORTS_W Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, CV_EXPORTS_W Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb,
float minProbability = (float)0.3); float minProbability = (float)0.3);
/** @brief Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml
@overload
*/
CV_EXPORTS_W Ptr<ERFilter> createERFilterNM1(const String& filename,
int thresholdDelta = 1, float minArea = (float)0.00025,
float maxArea = (float)0.13, float minProbability = (float)0.4,
bool nonMaxSuppression = true,
float minProbabilityDiff = (float)0.1);
/** @brief Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml
@overload
*/
CV_EXPORTS_W Ptr<ERFilter> createERFilterNM2(const String& filename,
float minProbability = (float)0.3);
/** @brief Allow to implicitly load the default classifier when creating an ERFilter object. /** @brief Allow to implicitly load the default classifier when creating an ERFilter object.
......
...@@ -61,6 +61,31 @@ enum ...@@ -61,6 +61,31 @@ enum
OCR_LEVEL_TEXTLINE OCR_LEVEL_TEXTLINE
}; };
//! Tesseract.PageSegMode Enumeration
enum page_seg_mode
{
PSM_OSD_ONLY,
PSM_AUTO_OSD,
PSM_AUTO_ONLY,
PSM_AUTO,
PSM_SINGLE_COLUMN,
PSM_SINGLE_BLOCK_VERT_TEXT,
PSM_SINGLE_BLOCK,
PSM_SINGLE_LINE,
PSM_SINGLE_WORD,
PSM_CIRCLE_WORD,
PSM_SINGLE_CHAR
};
//! Tesseract.OcrEngineMode Enumeration
enum ocr_engine_mode
{
OEM_TESSERACT_ONLY,
OEM_CUBE_ONLY,
OEM_TESSERACT_CUBE_COMBINED,
OEM_DEFAULT
};
//base class BaseOCR declares a common API that would be used in a typical text recognition scenario //base class BaseOCR declares a common API that would be used in a typical text recognition scenario
class CV_EXPORTS_W BaseOCR class CV_EXPORTS_W BaseOCR
{ {
...@@ -136,7 +161,7 @@ public: ...@@ -136,7 +161,7 @@ public:
possible values. possible values.
*/ */
CV_WRAP static Ptr<OCRTesseract> create(const char* datapath=NULL, const char* language=NULL, CV_WRAP static Ptr<OCRTesseract> create(const char* datapath=NULL, const char* language=NULL,
const char* char_whitelist=NULL, int oem=3, int psmode=3); const char* char_whitelist=NULL, int oem=OEM_DEFAULT, int psmode=PSM_AUTO);
}; };
......
...@@ -279,9 +279,9 @@ void ERFilterNM::er_tree_extract( InputArray image ) ...@@ -279,9 +279,9 @@ void ERFilterNM::er_tree_extract( InputArray image )
// the quads for euler number calculation // the quads for euler number calculation
// quads[2][2] and quads[2][3] are never used. // quads[2][2] and quads[2][3] are never used.
// The four lowest bits in each quads[i][j] correspond to the 2x2 binary patterns // The four lowest bits in each quads[i][j] correspond to the 2x2 binary patterns
// Q_1, Q_2, Q_3 in the Neumann and Matas CVPR 2012 paper // Q_1, Q_2, Q_3 in the Neumann and Matas CVPR 2012 paper
// (see in page 4 at the end of first column). // (see in page 4 at the end of first column).
// Q_1 and Q_2 have four patterns, while Q_3 has only two. // Q_1 and Q_2 have four patterns, while Q_3 has only two.
const int quads[3][4] = const int quads[3][4] =
{ {
...@@ -1145,6 +1145,17 @@ Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProb ...@@ -1145,6 +1145,17 @@ Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProb
return (Ptr<ERFilter>)filter; return (Ptr<ERFilter>)filter;
} }
Ptr<ERFilter> createERFilterNM1(const String& filename, int _thresholdDelta,
float _minArea, float _maxArea, float _minProbability,
bool _nonMaxSuppression, float _minProbabilityDiff) {
return createERFilterNM1(loadClassifierNM1(filename), _thresholdDelta, _minArea, _maxArea, _minProbability, _nonMaxSuppression, _minProbabilityDiff);
}
Ptr<ERFilter> createERFilterNM2(const String& filename, float _minProbability) {
return createERFilterNM2(loadClassifierNM2(filename), _minProbability);
}
/*! /*!
Allow to implicitly load the default classifier when creating an ERFilter object. Allow to implicitly load the default classifier when creating an ERFilter object.
The function takes as parameter the XML or YAML file with the classifier model The function takes as parameter the XML or YAML file with the classifier model
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment