Commit 52cca0dd authored by lluis's avatar lluis

Adds a first implementation of the OCRBeamSearchDecoder class using the Single…

Adds a first implementation of the OCRBeamSearchDecoder class using the Single Layer CNN character classifier described in Coates, Adam, et al. paper: Text detection and character recognition in scene images with unsupervised feature learning, ICDAR 2011
parent c05a7e01
......@@ -240,6 +240,117 @@ types.
*/
CV_EXPORTS Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierNM(const std::string& filename);
/* OCR BeamSearch Decoder */
/** @brief OCRBeamSearchDecoder class provides an interface for OCR using Beam Search algorithm.
@note
- (C++) An example on using OCRBeamSearchDecoder recognition combined with scene text detection can
be found at the demo sample:
<https://github.com/Itseez/opencv_contrib/blob/master/modules/text/samples/word_recognition.cpp>
*/
class CV_EXPORTS OCRBeamSearchDecoder : public BaseOCR
{
public:
/** @brief Callback with the character classifier is made a class.
This way it hides the feature extractor and the classifier itself, so developers can write
their own OCR code.
The default character classifier and feature extractor can be loaded using the utility funtion
loadOCRBeamSearchClassifierCNN with all its parameters provided in
<https://github.com/Itseez/opencv_contrib/blob/master/modules/text/samples/OCRBeamSearch_CNN_model_data.xml.gz>.
*/
class CV_EXPORTS ClassifierCallback
{
public:
virtual ~ClassifierCallback() { }
/** @brief The character classifier must return a (ranked list of) class(es) id('s)
@param image Input image CV_8UC1 or CV_8UC3 with a single letter.
@param out_class The classifier returns the character class categorical label, or list of
class labels, to which the input image corresponds.
@param out_confidence The classifier returns the probability of the input image
corresponding to each classes in out_class.
*/
virtual void eval( InputArray image, std::vector< std::vector<double> >& recognition_probabilities, std::vector<int>& oversegmentation );
};
public:
/** @brief Recognize text using Beam Search.
Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
@param image Input image CV_8UC1 with a single text line (or word).
@param output_text Output text. Most likely character sequence found by the HMM decoder.
@param component_rects If provided the method will output a list of Rects for the individual
text elements found (e.g. words).
@param component_texts If provided the method will output a list of text strings for the
recognition of individual text elements found (e.g. words).
@param component_confidences If provided the method will output a list of confidence values
for the recognition of individual text elements found (e.g. words).
@param component_level Only OCR_LEVEL_WORD is supported.
*/
virtual void run(Mat& image, std::string& output_text, std::vector<Rect>* component_rects=NULL,
std::vector<std::string>* component_texts=NULL, std::vector<float>* component_confidences=NULL,
int component_level=0);
/** @brief Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.
@param classifier The character classifier with built in feature extractor.
@param vocabulary The language vocabulary (chars when ascii english text). vocabulary.size()
must be equal to the number of classes of the classifier.
@param transition_probabilities_table Table with transition probabilities between character
pairs. cols == rows == vocabulary.size().
@param emission_probabilities_table Table with observation emission probabilities. cols ==
rows == vocabulary.size().
@param mode HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
(<http://en.wikipedia.org/wiki/Viterbi_algorithm>).
*/
static Ptr<OCRBeamSearchDecoder> create(const Ptr<OCRBeamSearchDecoder::ClassifierCallback> classifier,// The character classifier with built in feature extractor
const std::string& vocabulary, // The language vocabulary (chars when ascii english text)
// size() must be equal to the number of classes
InputArray transition_probabilities_table, // Table with transition probabilities between character pairs
// cols == rows == vocabulari.size()
InputArray emission_probabilities_table, // Table with observation emission probabilities
// cols == rows == vocabulari.size()
decoder_mode mode = OCR_DECODER_VITERBI, // HMM Decoding algorithm (only Viterbi for the moment)
int beam_size = 50); // Size of the beam in Beam Search algorithm
protected:
Ptr<OCRBeamSearchDecoder::ClassifierCallback> classifier;
std::string vocabulary;
Mat transition_p;
Mat emission_p;
decoder_mode mode;
int beam_size;
};
/** @brief Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object.
@param filename The XML or YAML file with the classifier model (e.g. OCRHMM_knn_model_data.xml)
The default classifier is based in the scene text recognition method proposed by Adam Coates &
Andrew NG in [Coates11a]. The character classifier sonsists in a Single Layer Convolutional Neural Network and
a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions
at each window location.
*/
CV_EXPORTS Ptr<OCRBeamSearchDecoder::ClassifierCallback> loadOCRBeamSearchClassifierCNN(const std::string& filename);
//! @}
}
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/ml.hpp"
#include <iostream>
#include <fstream>
#include <set>
namespace cv
{
namespace text
{
using namespace std;
using namespace cv::ml;
/* OCR BeamSearch Decoder */
void OCRBeamSearchDecoder::run(Mat& image, string& output_text, vector<Rect>* component_rects,
vector<string>* component_texts, vector<float>* component_confidences,
int component_level)
{
CV_Assert( (image.type() == CV_8UC1) || (image.type() == CV_8UC3) );
CV_Assert( (component_level == OCR_LEVEL_TEXTLINE) || (component_level == OCR_LEVEL_WORD) );
output_text.clear();
if (component_rects != NULL)
component_rects->clear();
if (component_texts != NULL)
component_texts->clear();
if (component_confidences != NULL)
component_confidences->clear();
}
void OCRBeamSearchDecoder::ClassifierCallback::eval( InputArray image, vector< vector<double> >& recognition_probabilities, vector<int>& oversegmentation)
{
CV_Assert(( image.getMat().type() == CV_8UC3 ) || ( image.getMat().type() == CV_8UC1 ));
if (!recognition_probabilities.empty())
{
for (size_t i=0; i<recognition_probabilities.size(); i++)
recognition_probabilities[i].clear();
}
recognition_probabilities.clear();
oversegmentation.clear();
}
bool beam_sort_function ( pair< double,vector<int> > i, pair< double,vector<int> > j );
bool beam_sort_function ( pair< double,vector<int> > i, pair< double,vector<int> > j )
{
return (i.first > j.first);
}
class OCRBeamSearchDecoderImpl : public OCRBeamSearchDecoder
{
public:
//Default constructor
OCRBeamSearchDecoderImpl( Ptr<OCRBeamSearchDecoder::ClassifierCallback> _classifier,
const string& _vocabulary,
InputArray transition_probabilities_table,
InputArray emission_probabilities_table,
decoder_mode _mode,
int _beam_size)
{
classifier = _classifier;
transition_p = transition_probabilities_table.getMat();
emission_p = emission_probabilities_table.getMat();
vocabulary = _vocabulary;
mode = _mode;
beam_size = _beam_size;
}
~OCRBeamSearchDecoderImpl()
{
}
void run( Mat& src,
string& out_sequence,
vector<Rect>* component_rects,
vector<string>* component_texts,
vector<float>* component_confidences,
int component_level)
{
CV_Assert( (src.type() == CV_8UC1) || (src.type() == CV_8UC3) );
CV_Assert( (src.cols > 0) && (src.rows > 0) );
CV_Assert( component_level == OCR_LEVEL_WORD );
out_sequence.clear();
if (component_rects != NULL)
component_rects->clear();
if (component_texts != NULL)
component_texts->clear();
if (component_confidences != NULL)
component_confidences->clear();
// TODO split a line into words
if(src.type() == CV_8UC3)
{
cvtColor(src,src,COLOR_RGB2GRAY);
}
vector< vector<double> > recognition_probabilities;
vector<int> oversegmentation;
classifier->eval(src, recognition_probabilities, oversegmentation);
/*Now we go here with the beam search algorithm to optimize the recognition score*/
//convert probabilities to log probabilities
for (size_t i=0; i<recognition_probabilities.size(); i++)
{
for (size_t j=0; j<recognition_probabilities[i].size(); j++)
{
if (recognition_probabilities[i][j] == 0)
recognition_probabilities[i][j] = -DBL_MAX;
else
recognition_probabilities[i][j] = log(recognition_probabilities[i][j]);
}
}
for (int i=0; i<transition_p.rows; i++)
{
for (int j=0; j<transition_p.cols; j++)
{
if (transition_p.at<double>(i,j) == 0)
transition_p.at<double>(i,j) = -DBL_MAX;
else
transition_p.at<double>(i,j) = log(transition_p.at<double>(i,j));
}
}
//TODO it would be interesting to have a hash table with a vector of booleans
// but this is not possible when we have a large number of possible segmentations.
//vector<bool> visited_nodes(pow(2,oversegmentation.size()),false); // hash table for visited nodes
// options are using std::set<unsigned long long int> to store only the keys of visited nodes
// but will deteriorate the time performance.
set<unsigned long long int> visited_nodes; //TODO make it member of class
// it is also possible to reduce the number of seg. points in some way (e.g. use only seg.points
// for which there is a change on the class prediction)
vector<int> start_segmentation;
start_segmentation.push_back(oversegmentation[0]);
start_segmentation.push_back(oversegmentation[oversegmentation.size()-1]);
vector< pair< double,vector<int> > > beam;
beam.push_back( pair< double,vector<int> > (score_segmentation(start_segmentation, recognition_probabilities, out_sequence), start_segmentation) );
vector< vector<int> > childs = generate_childs(start_segmentation,oversegmentation, visited_nodes);
if (!childs.empty())
update_beam( beam, childs, recognition_probabilities);
//cout << "beam size " << beam.size() << " best score " << beam[0].first<< endl;
int generated_chids = childs.size();
while (generated_chids != 0)
{
generated_chids = 0;
vector< pair< double,vector<int> > > old_beam = beam;
for (size_t i=0; i<old_beam.size(); i++)
{
childs = generate_childs(old_beam[i].second,oversegmentation, visited_nodes);
if (!childs.empty())
update_beam( beam, childs, recognition_probabilities);
generated_chids += childs.size();
}
//cout << "beam size " << beam.size() << " best score " << beam[0].first << endl;
}
// FINISHED ! Get the best prediction found into out_sequence
score_segmentation(beam[0].second, recognition_probabilities, out_sequence);
// TODO fill other output parameters
return;
}
private:
////////////////////////////////////////////////////////////
// TODO the way we expand nodes makes the recognition score heuristic not monotonic
// it should start from left node 0 and grow always to the right.
vector< vector<int> > generate_childs(vector<int> &segmentation, vector<int> &oversegmentation, set<unsigned long long int> &visited_nodes)
{
/*cout << " generate childs for [";
for (size_t i = 0 ; i < segmentation .size(); i++)
cout << segmentation[i] << ",";
cout << "] ";*/
vector< vector<int> > childs;
for (size_t i=0; i<oversegmentation.size(); i++)
{
int seg_point = oversegmentation[i];
if (find(segmentation.begin(), segmentation.end(), seg_point) == segmentation.end())
{
//cout << seg_point << " " ;
vector<int> child = segmentation;
child.push_back(seg_point);
sort(child.begin(), child.end());
unsigned long long int key = 0;
for (size_t j=0; j<child.size(); j++)
{
key += pow(2,oversegmentation.size()-(oversegmentation.end()-find(oversegmentation.begin(), oversegmentation.end(), child[j])));
}
//if (!visited_nodes[key])
if (visited_nodes.find(key) == visited_nodes.end())
{
childs.push_back(child);
//visited_nodes[key] = true;
visited_nodes.insert(key);
}
}
}
//cout << endl;
return childs;
}
////////////////////////////////////////////////////////////
//TODO shall the beam itself be a member of the class?
void update_beam (vector< pair< double,vector<int> > > &beam, vector< vector<int> > &childs, vector< vector<double> > &recognition_probabilities)
{
string out_sequence;
double min_score = -DBL_MAX; //min score value to be part of the beam
if ((int)beam.size() == beam_size)
min_score = beam[beam.size()-1].first; //last element has the lowest score
for (size_t i=0; i<childs.size(); i++)
{
double score = score_segmentation(childs[i], recognition_probabilities, out_sequence);
if (score > min_score)
{
beam.push_back(pair< double,vector<int> >(score,childs[i]));
sort(beam.begin(),beam.end(),beam_sort_function);
if ((int)beam.size() > beam_size)
{
beam.pop_back();
min_score = beam[beam.size()-1].first;
}
}
}
}
////////////////////////////////////////////////////////////
// TODO Add heuristics to the score function (see PhotoOCR paper)
// e.g.: in some cases we discard a segmentation because it includes a very large character
// in other cases we do it because the overlapping between two chars is too large
// etc.
double score_segmentation(vector<int> &segmentation, vector< vector<double> > &observations, string& outstring)
{
//TODO This must be extracted from dictionary
vector<double> start_p(vocabulary.size());
for (int i=0; i<(int)vocabulary.size(); i++)
start_p[i] = log(1.0/vocabulary.size());
Mat V = Mat::ones((int)segmentation.size()-1,(int)vocabulary.size(),CV_64FC1);
V = V * -DBL_MAX;
vector<string> path(vocabulary.size());
// Initialize base cases (t == 0)
for (int i=0; i<(int)vocabulary.size(); i++)
{
V.at<double>(0,i) = start_p[i] + observations[segmentation[1]-1][i];
path[i] = vocabulary.at(i);
}
// Run Viterbi for t > 0
for (int t=1; t<(int)segmentation.size()-1; t++)
{
vector<string> newpath(vocabulary.size());
for (int i=0; i<(int)vocabulary.size(); i++)
{
double max_prob = -DBL_MAX;
int best_idx = 0;
for (int j=0; j<(int)vocabulary.size(); j++)
{
double prob = V.at<double>(t-1,j) + transition_p.at<double>(j,i) + observations[segmentation[t+1]-1][i];
if ( prob > max_prob)
{
max_prob = prob;
best_idx = j;
}
}
V.at<double>(t,i) = max_prob;
newpath[i] = path[best_idx] + vocabulary.at(i);
}
// Don't need to remember the old paths
path.swap(newpath);
}
double max_prob = -DBL_MAX;
int best_idx = 0;
for (int i=0; i<(int)vocabulary.size(); i++)
{
double prob = V.at<double>((int)segmentation.size()-2,i);
if ( prob > max_prob)
{
max_prob = prob;
best_idx = i;
}
}
//cout << " score " << max_prob / (segmentation.size()-1) << " " << path[best_idx] << endl;
outstring = path[best_idx];
return max_prob / (segmentation.size()-1);
}
};
Ptr<OCRBeamSearchDecoder> OCRBeamSearchDecoder::create( Ptr<OCRBeamSearchDecoder::ClassifierCallback> _classifier,
const string& _vocabulary,
InputArray transition_p,
InputArray emission_p,
decoder_mode _mode,
int _beam_size)
{
return makePtr<OCRBeamSearchDecoderImpl>(_classifier, _vocabulary, transition_p, emission_p, _mode, _beam_size);
}
class CV_EXPORTS OCRBeamSearchClassifierCNN : public OCRBeamSearchDecoder::ClassifierCallback
{
public:
//constructor
OCRBeamSearchClassifierCNN(const std::string& filename);
// Destructor
~OCRBeamSearchClassifierCNN() {}
void eval( InputArray src, vector< vector<double> >& recognition_probabilities, vector<int>& oversegmentation );
protected:
void normalizeAndZCA(Mat& patches);
double eval_feature(Mat& feature, double* prob_estimates);
private:
//TODO implement getters/setters for some of these members (if apply)
int nr_class; // number of classes
int nr_feature; // number of features
Mat feature_min; // scale range
Mat feature_max;
Mat weights; // Logistic Regression weights
Mat kernels; // CNN kernels
Mat M, P; // ZCA Whitening parameters
int step_size; // sliding window step
int window_size; // window size
int quad_size;
int patch_size;
int num_quads; // extract 25 quads (12x12) from each image
int num_tiles; // extract 25 patches (8x8) from each quad
double alpha; // used in non-linear activation function z = max(0, |D*a| - alpha)
};
OCRBeamSearchClassifierCNN::OCRBeamSearchClassifierCNN (const string& filename)
{
if (ifstream(filename.c_str()))
{
FileStorage fs(filename, FileStorage::READ);
// Load kernels bank and withenning params
fs["kernels"] >> kernels;
fs["M"] >> M;
fs["P"] >> P;
// Load Logistic Regression weights
fs["weights"] >> weights;
// Load feature scaling ranges
fs["feature_min"] >> feature_min;
fs["feature_max"] >> feature_max;
fs.release();
// TODO check all matrix dimensions match correctly and no one is empty
}
else
CV_Error(Error::StsBadArg, "Default classifier data file not found!");
nr_feature = weights.rows;
nr_class = weights.cols;
// TODO some of this can be inferred from the input file (e.g. patch size must be sqrt(filters.cols))
step_size = 4;
window_size = 32;
quad_size = 12;
patch_size = 8;
num_quads = 25;
num_tiles = 25;
alpha = 0.5;
}
void OCRBeamSearchClassifierCNN::eval( InputArray _src, vector< vector<double> >& recognition_probabilities, vector<int>& oversegmentation)
{
CV_Assert(( _src.getMat().type() == CV_8UC3 ) || ( _src.getMat().type() == CV_8UC1 ));
if (!recognition_probabilities.empty())
{
for (size_t i=0; i<recognition_probabilities.size(); i++)
recognition_probabilities[i].clear();
}
recognition_probabilities.clear();
oversegmentation.clear();
Mat src = _src.getMat();
if(src.type() == CV_8UC3)
{
cvtColor(src,src,COLOR_RGB2GRAY);
}
// TODO shall we resize the input image or make a copy ?
resize(src,src,Size(window_size*src.cols/src.rows,window_size));
int seg_points = 0;
oversegmentation.push_back(seg_points);
Mat quad;
Mat tmp;
Mat img;
// begin sliding window loop foreach detection window
for (int x_c=0; x_c<=src.cols-window_size; x_c=x_c+step_size)
{
img = src(Rect(Point(x_c,0),Size(window_size,window_size)));
int patch_count = 0;
vector< vector<double> > data_pool(9);
int quad_id = 1;
for (int q_x=0; q_x<=window_size-quad_size; q_x=q_x+(quad_size/2-1))
{
for (int q_y=0; q_y<=window_size-quad_size; q_y=q_y+(quad_size/2-1))
{
Rect quad_rect = Rect(q_x,q_y,quad_size,quad_size);
quad = img(quad_rect);
//start sliding window (8x8) in each tile and store the patch as row in data_pool
for (int w_x=0; w_x<=quad_size-patch_size; w_x++)
{
for (int w_y=0; w_y<=quad_size-patch_size; w_y++)
{
quad(Rect(w_x,w_y,patch_size,patch_size)).copyTo(tmp);
tmp = tmp.reshape(0,1);
tmp.convertTo(tmp, CV_64F);
normalizeAndZCA(tmp);
vector<double> patch;
tmp.copyTo(patch);
if ((quad_id == 1)||(quad_id == 2)||(quad_id == 6)||(quad_id == 7))
data_pool[0].insert(data_pool[0].end(),patch.begin(),patch.end());
if ((quad_id == 2)||(quad_id == 7)||(quad_id == 3)||(quad_id == 8)||(quad_id == 4)||(quad_id == 9))
data_pool[1].insert(data_pool[1].end(),patch.begin(),patch.end());
if ((quad_id == 4)||(quad_id == 9)||(quad_id == 5)||(quad_id == 10))
data_pool[2].insert(data_pool[2].end(),patch.begin(),patch.end());
if ((quad_id == 6)||(quad_id == 11)||(quad_id == 16)||(quad_id == 7)||(quad_id == 12)||(quad_id == 17))
data_pool[3].insert(data_pool[3].end(),patch.begin(),patch.end());
if ((quad_id == 7)||(quad_id == 12)||(quad_id == 17)||(quad_id == 8)||(quad_id == 13)||(quad_id == 18)||(quad_id == 9)||(quad_id == 14)||(quad_id == 19))
data_pool[4].insert(data_pool[4].end(),patch.begin(),patch.end());
if ((quad_id == 9)||(quad_id == 14)||(quad_id == 19)||(quad_id == 10)||(quad_id == 15)||(quad_id == 20))
data_pool[5].insert(data_pool[5].end(),patch.begin(),patch.end());
if ((quad_id == 16)||(quad_id == 21)||(quad_id == 17)||(quad_id == 22))
data_pool[6].insert(data_pool[6].end(),patch.begin(),patch.end());
if ((quad_id == 17)||(quad_id == 22)||(quad_id == 18)||(quad_id == 23)||(quad_id == 19)||(quad_id == 24))
data_pool[7].insert(data_pool[7].end(),patch.begin(),patch.end());
if ((quad_id == 19)||(quad_id == 24)||(quad_id == 20)||(quad_id == 25))
data_pool[8].insert(data_pool[8].end(),patch.begin(),patch.end());
patch_count++;
}
}
quad_id++;
}
}
//do dot product of each normalized and whitened patch
//each pool is averaged and this yields a representation of 9xD
Mat feature = Mat::zeros(9,kernels.rows,CV_64FC1);
for (int i=0; i<9; i++)
{
Mat pool = Mat(data_pool[i]);
pool = pool.reshape(0,data_pool[i].size()/kernels.cols);
for (int p=0; p<pool.rows; p++)
{
for (int f=0; f<kernels.rows; f++)
{
feature.row(i).at<double>(0,f) = feature.row(i).at<double>(0,f) + max(0.0,std::abs(pool.row(p).dot(kernels.row(f)))-alpha);
}
}
}
feature = feature.reshape(0,1);
// data must be normalized within the range obtained during training
double lower = -1.0;
double upper = 1.0;
for (int k=0; k<feature.cols; k++)
{
feature.at<double>(0,k) = lower + (upper-lower) *
(feature.at<double>(0,k)-feature_min.at<double>(0,k))/
(feature_max.at<double>(0,k)-feature_min.at<double>(0,k));
}
double probabilities[nr_class];
double *p = &probabilities[0];
double predict_label = eval_feature(feature,p);
//cout << " Prediction: " << vocabulary[predict_label] << " with probability " << p[0] << endl;
if (predict_label < 0) // TODO use cvError
cout << "OCRBeamSearchClassifierCNN::eval Error: unexpected prediction in eval_feature()" << endl;
seg_points++;
oversegmentation.push_back(seg_points);
vector<double> recognition_p(probabilities, probabilities+sizeof(probabilities)/sizeof(double));
recognition_probabilities.push_back(recognition_p);
}
}
// normalize for contrast and apply ZCA whitening to a set of image patches
void OCRBeamSearchClassifierCNN::normalizeAndZCA(Mat& patches)
{
//Normalize for contrast
for (int i=0; i<patches.rows; i++)
{
Scalar row_mean, row_std;
meanStdDev(patches.row(i),row_mean,row_std);
row_std[0] = sqrt(pow(row_std[0],2)*patches.cols/(patches.cols-1)+10);
patches.row(i) = (patches.row(i) - row_mean[0]) / row_std[0];
}
//ZCA whitening
if ((M.dims == 0) || (P.dims == 0))
{
Mat CC;
calcCovarMatrix(patches,CC,M,COVAR_NORMAL|COVAR_ROWS|COVAR_SCALE);
CC = CC * patches.rows / (patches.rows-1);
Mat e_val,e_vec;
eigen(CC.t(),e_val,e_vec);
e_vec = e_vec.t();
sqrt(1./(e_val + 0.1), e_val);
Mat V = Mat::zeros(e_vec.rows, e_vec.cols, CV_64FC1);
Mat D = Mat::eye(e_vec.rows, e_vec.cols, CV_64FC1);
for (int i=0; i<e_vec.cols; i++)
{
e_vec.col(e_vec.cols-i-1).copyTo(V.col(i));
D.col(i) = D.col(i) * e_val.at<double>(0,e_val.rows-i-1);
}
P = V * D * V.t();
}
for (int i=0; i<patches.rows; i++)
patches.row(i) = patches.row(i) - M;
patches = patches * P;
}
double OCRBeamSearchClassifierCNN::eval_feature(Mat& feature, double* prob_estimates)
{
for(int i=0;i<nr_class;i++)
prob_estimates[i] = 0;
for(int idx=0; idx<nr_feature; idx++)
for(int i=0;i<nr_class;i++)
prob_estimates[i] += weights.at<float>(idx,i)*feature.at<double>(0,idx); //TODO use vectorized dot product
int dec_max_idx = 0;
for(int i=1;i<nr_class;i++)
{
if(prob_estimates[i] > prob_estimates[dec_max_idx])
dec_max_idx = i;
}
for(int i=0;i<nr_class;i++)
prob_estimates[i]=1/(1+exp(-prob_estimates[i]));
double sum=0;
for(int i=0; i<nr_class; i++)
sum+=prob_estimates[i];
for(int i=0; i<nr_class; i++)
prob_estimates[i]=prob_estimates[i]/sum;
return dec_max_idx;
}
Ptr<OCRBeamSearchDecoder::ClassifierCallback> loadOCRBeamSearchClassifierCNN(const std::string& filename)
{
return makePtr<OCRBeamSearchClassifierCNN>(filename);
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment