Commit 5027710d authored by Kurnianggoro's avatar Kurnianggoro

Fixed: ROI extraction when the given ROI is out of image; made the…

Fixed: ROI extraction when the given ROI is out of image; made the max_patch_size to be adjustable; add the CN feature extraction method
parent 5d772dae
...@@ -1190,6 +1190,10 @@ class CV_EXPORTS_W TrackerTLD : public Tracker ...@@ -1190,6 +1190,10 @@ class CV_EXPORTS_W TrackerTLD : public Tracker
}; };
/** @brief KCF is a novel tracking framework that utilize properties of circulant matrix to enhance the processing speed. /** @brief KCF is a novel tracking framework that utilize properties of circulant matrix to enhance the processing speed.
* This tracking method is implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN).
* The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html>
* as well as the matlab implementation. For more information about KCF with color-names features, please refer to
* <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>.
*/ */
class CV_EXPORTS_W TrackerKCF : public Tracker class CV_EXPORTS_W TrackerKCF : public Tracker
{ {
...@@ -1203,9 +1207,9 @@ class CV_EXPORTS_W TrackerKCF : public Tracker ...@@ -1203,9 +1207,9 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
double sigma; // gaussian kernel bandwidth double sigma; // gaussian kernel bandwidth
double lambda; // regularization double lambda; // regularization
double interp_factor; // linear interpolation factor for adaptation double interp_factor; // linear interpolation factor for adaptation
double output_sigma_factor; // spatial bandwidth (proportional to target) double output_sigma_factor; // spatial bandwidth (proportional to target)
bool resize; // activate the resize feature to improve the processing speed
bool resize; // activate the resize feature to improves the processing speed int max_patch_size; // threshold for the ROI size
}; };
/** @brief Constructor /** @brief Constructor
......
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
//M*/ //M*/
#include "precomp.hpp" #include "precomp.hpp"
#include "featureColorName.cpp"
#include <complex> #include <complex>
/*--------------------------- /*---------------------------
...@@ -54,7 +55,7 @@ namespace cv{ ...@@ -54,7 +55,7 @@ namespace cv{
TrackerKCFModel(TrackerKCF::Params /*params*/){} TrackerKCFModel(TrackerKCF::Params /*params*/){}
~TrackerKCFModel(){} ~TrackerKCFModel(){}
protected: protected:
void modelEstimationImpl( const std::vector<Mat>& responses ){} void modelEstimationImpl( const std::vector<Mat>& /*responses*/ ){}
void modelUpdateImpl(){} void modelUpdateImpl(){}
}; };
} /* namespace cv */ } /* namespace cv */
...@@ -68,7 +69,7 @@ namespace cv{ ...@@ -68,7 +69,7 @@ namespace cv{
/* /*
* Prototype * Prototype
*/ */
class TrackerKCFImpl : public TrackerKCF{ class TrackerKCFImpl : public TrackerKCF, public ColorName{
public: public:
TrackerKCFImpl( const TrackerKCF::Params &parameters = TrackerKCF::Params() ); TrackerKCFImpl( const TrackerKCF::Params &parameters = TrackerKCF::Params() );
void read( const FileNode& fn ); void read( const FileNode& fn );
...@@ -89,7 +90,8 @@ namespace cv{ ...@@ -89,7 +90,8 @@ namespace cv{
void createHanningWindow(OutputArray _dst, cv::Size winSize, int type); void createHanningWindow(OutputArray _dst, cv::Size winSize, int type);
void inline fft2(Mat src, Mat & dest); void inline fft2(Mat src, Mat & dest);
void inline ifft2(Mat src, Mat & dest); void inline ifft2(Mat src, Mat & dest);
void getSubWindow(Mat img, Rect roi, Mat& patch); bool getSubWindow(Mat img, Rect roi, Mat& patch);
void extractCN(Mat _patch, Mat & cnFeatures);
void denseGaussKernel(double sigma, Mat x, Mat y, Mat & k); void denseGaussKernel(double sigma, Mat x, Mat y, Mat & k);
void calcResponse(Mat alphaf, Mat k, Mat & response); void calcResponse(Mat alphaf, Mat k, Mat & response);
...@@ -144,7 +146,6 @@ namespace cv{ ...@@ -144,7 +146,6 @@ namespace cv{
*/ */
bool TrackerKCFImpl::initImpl( const Mat& image, const Rect2d& boundingBox ){ bool TrackerKCFImpl::initImpl( const Mat& image, const Rect2d& boundingBox ){
frame=0; frame=0;
roi = boundingBox; roi = boundingBox;
//calclulate output sigma //calclulate output sigma
...@@ -152,7 +153,7 @@ namespace cv{ ...@@ -152,7 +153,7 @@ namespace cv{
output_sigma=-0.5/(output_sigma*output_sigma); output_sigma=-0.5/(output_sigma*output_sigma);
//resize the ROI whenever needed //resize the ROI whenever needed
if(params.resize && roi.width*roi.height>80*80){ if(params.resize && roi.width*roi.height>params.max_patch_size){
resizeImage=true; resizeImage=true;
roi.x/=2.0; roi.x/=2.0;
roi.y/=2.0; roi.y/=2.0;
...@@ -195,7 +196,7 @@ namespace cv{ ...@@ -195,7 +196,7 @@ namespace cv{
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){ bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){
double minVal, maxVal; // min-max response double minVal, maxVal; // min-max response
Point minLoc,maxLoc; // min-max location Point minLoc,maxLoc; // min-max location
Mat img; Mat img;
// check the channels of the input image, grayscale is preferred // check the channels of the input image, grayscale is preferred
CV_Assert(image.channels() == 1 || image.channels() == 3); CV_Assert(image.channels() == 1 || image.channels() == 3);
...@@ -207,7 +208,7 @@ namespace cv{ ...@@ -207,7 +208,7 @@ namespace cv{
if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2)); if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2));
// extract and pre-process the patch // extract and pre-process the patch
getSubWindow(img,roi, x); if(!getSubWindow(img,roi, x))return false;
// detection part // detection part
if(frame>0){ if(frame>0){
...@@ -222,7 +223,7 @@ namespace cv{ ...@@ -222,7 +223,7 @@ namespace cv{
} }
// extract the patch for learning purpose // extract the patch for learning purpose
getSubWindow(img,roi, x); if(!getSubWindow(img,roi, x))return false;
// Kernel Regularized Least-Squares, calculate alphas // Kernel Regularized Least-Squares, calculate alphas
denseGaussKernel(params.sigma,x,x,k); denseGaussKernel(params.sigma,x,x,k);
...@@ -323,12 +324,18 @@ namespace cv{ ...@@ -323,12 +324,18 @@ namespace cv{
/* /*
* obtain the patch and apply hann window filter to it * obtain the patch and apply hann window filter to it
* TODO: return false if roi is outside the image, now it produce ERROR!
*/ */
void TrackerKCFImpl::getSubWindow(Mat img, Rect roi, Mat& patch){ bool TrackerKCFImpl::getSubWindow(Mat img, Rect roi, Mat& patch){
Rect region=roi; Rect region=roi;
// return false if roi is outside the image
if((roi.x+roi.width<0)
||(roi.y+roi.height<0)
||(roi.x>=img.cols)
||(roi.y>=img.rows)
)return false;
// extract patch inside the image // extract patch inside the image
if(roi.x<0){region.x=0;region.width+=roi.x;} if(roi.x<0){region.x=0;region.width+=roi.x;}
if(roi.y<0){region.y=0;region.height+=roi.y;} if(roi.y<0){region.y=0;region.height+=roi.y;}
...@@ -352,7 +359,30 @@ namespace cv{ ...@@ -352,7 +359,30 @@ namespace cv{
patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5 patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5
patch=patch.mul(hann); // hann window filter patch=patch.mul(hann); // hann window filter
return true;
}
/* Convert BGR to ColorNames
*/
void TrackerKCFImpl::extractCN(Mat _patch, Mat & cnFeatures){
Vec3b & pixel = _patch.at<Vec3b>(0,0);
unsigned index;
cnFeatures = Mat::zeros(roi.height,roi.width,CV_64FC(10));
for(int i=0;i<_patch.rows;i++){
for(int j=0;j<_patch.cols;j++){
pixel=_patch.at<Vec3b>(i,j);
index=floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8);
//copy the values
for(int k=0;k<10;k++){
cnFeatures.at<Vec<double,10> >(i,j)=cn[index][k];
}
}
}
} }
/* /*
...@@ -381,8 +411,8 @@ namespace cv{ ...@@ -381,8 +411,8 @@ namespace cv{
// TODO: check wether we really need thresholding or not // TODO: check wether we really need thresholding or not
//threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x)) //threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x))
for(unsigned i=0;i<xy.rows;i++){ for(int i=0;i<xy.rows;i++){
for(unsigned j=0;j<xy.cols;j++){ for(int j=0;j<xy.cols;j++){
if(xy.at<double>(i,j)<0.0)xy.at<double>(i,j)=0.0; if(xy.at<double>(i,j)<0.0)xy.at<double>(i,j)=0.0;
} }
} }
...@@ -475,6 +505,7 @@ namespace cv{ ...@@ -475,6 +505,7 @@ namespace cv{
interp_factor=0.075; interp_factor=0.075;
output_sigma_factor=1.0/16.0; output_sigma_factor=1.0/16.0;
resize=true; resize=true;
max_patch_size=80*80;
} }
void TrackerKCF::Params::read( const cv::FileNode& fn ){ void TrackerKCF::Params::read( const cv::FileNode& fn ){
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment