Commit 483d7d98 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents ef965066 e38c5505
......@@ -196,8 +196,6 @@ private:
Mat_<int> nfeatures_;
Mat_<int> colors_;
Mat_<float> weights_;
Mat buf_;
};
......@@ -459,8 +457,7 @@ void BackgroundSubtractorGMGImpl::apply(InputArray _frame, OutputArray _fgmask,
if (smoothingRadius > 0)
{
medianBlur(fgmask, buf_, smoothingRadius);
swap(fgmask, buf_);
medianBlur(fgmask, fgmask, smoothingRadius);
}
// keep track of how many frames we have processed
......@@ -474,7 +471,6 @@ void BackgroundSubtractorGMGImpl::release()
nfeatures_.release();
colors_.release();
weights_.release();
buf_.release();
}
......
......@@ -99,73 +99,73 @@ Apart from fields inspired to KeyPoint class, KeyLines stores information about
original image and in octave it was extracted from, about line's length and number of pixels it
covers.
*/
struct CV_EXPORTS KeyLine
struct CV_EXPORTS_W_SIMPLE KeyLine
{
public:
/** orientation of the line */
float angle;
CV_PROP_RW float angle;
/** object ID, that can be used to cluster keylines by the line they represent */
int class_id;
CV_PROP_RW int class_id;
/** octave (pyramid layer), from which the keyline has been extracted */
int octave;
CV_PROP_RW int octave;
/** coordinates of the middlepoint */
Point2f pt;
CV_PROP_RW Point2f pt;
/** the response, by which the strongest keylines have been selected.
It's represented by the ratio between line's length and maximum between
image's width and height */
float response;
CV_PROP_RW float response;
/** minimum area containing line */
float size;
CV_PROP_RW float size;
/** lines's extremes in original image */
float startPointX;
float startPointY;
float endPointX;
float endPointY;
CV_PROP_RW float startPointX;
CV_PROP_RW float startPointY;
CV_PROP_RW float endPointX;
CV_PROP_RW float endPointY;
/** line's extremes in image it was extracted from */
float sPointInOctaveX;
float sPointInOctaveY;
float ePointInOctaveX;
float ePointInOctaveY;
CV_PROP_RW float sPointInOctaveX;
CV_PROP_RW float sPointInOctaveY;
CV_PROP_RW float ePointInOctaveX;
CV_PROP_RW float ePointInOctaveY;
/** the length of line */
float lineLength;
CV_PROP_RW float lineLength;
/** number of pixels covered by the line */
int numOfPixels;
CV_PROP_RW int numOfPixels;
/** Returns the start point of the line in the original image */
Point2f getStartPoint() const
CV_WRAP Point2f getStartPoint() const
{
return Point2f(startPointX, startPointY);
}
/** Returns the end point of the line in the original image */
Point2f getEndPoint() const
CV_WRAP Point2f getEndPoint() const
{
return Point2f(endPointX, endPointY);
}
/** Returns the start point of the line in the octave it was extracted from */
Point2f getStartPointInOctave() const
CV_WRAP Point2f getStartPointInOctave() const
{
return Point2f(sPointInOctaveX, sPointInOctaveY);
}
/** Returns the end point of the line in the octave it was extracted from */
Point2f getEndPointInOctave() const
CV_WRAP Point2f getEndPointInOctave() const
{
return Point2f(ePointInOctaveX, ePointInOctaveY);
}
/** constructor */
KeyLine()
CV_WRAP KeyLine()
{
}
};
......@@ -892,7 +892,7 @@ the one used in *BinaryDescriptor* class, data associated to a line's extremes i
in octave it was extracted from, coincide. KeyLine's field *class_id* is used as an index to
indicate the order of extraction of a line inside a single octave.
*/
class CV_EXPORTS LSDDetector : public Algorithm
class CV_EXPORTS_W LSDDetector : public Algorithm
{
public:
......@@ -905,7 +905,7 @@ LSDDetector()
/** @brief Creates ad LSDDetector object, using smart pointers.
*/
static Ptr<LSDDetector> createLSDDetector();
CV_WRAP static Ptr<LSDDetector> createLSDDetector();
/** @brief Detect lines inside an image.
......@@ -915,7 +915,7 @@ static Ptr<LSDDetector> createLSDDetector();
@param numOctaves number of octaves inside pyramid
@param mask mask matrix to detect only KeyLines of interest
*/
void detect( const Mat& image, CV_OUT std::vector<KeyLine>& keypoints, int scale, int numOctaves, const Mat& mask = Mat() );
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyLine>& keypoints, int scale, int numOctaves, const Mat& mask = Mat() );
/** @overload
@param images input images
......@@ -924,7 +924,7 @@ void detect( const Mat& image, CV_OUT std::vector<KeyLine>& keypoints, int scale
@param numOctaves number of octaves inside pyramid
@param masks vector of mask matrices to detect only KeyLines of interest from each input image
*/
void detect( const std::vector<Mat>& images, std::vector<std::vector<KeyLine> >& keylines, int scale, int numOctaves,
CV_WRAP void detect( const std::vector<Mat>& images, std::vector<std::vector<KeyLine> >& keylines, int scale, int numOctaves,
const std::vector<Mat>& masks = std::vector<Mat>() ) const;
private:
......
#include "opencv2/line_descriptor.hpp"
template<> struct pyopencvVecConverter<line_descriptor::KeyLine>
{
static bool to(PyObject* obj, std::vector<line_descriptor::KeyLine>& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<line_descriptor::KeyLine>& value)
{
return pyopencv_from_generic_vec(value);
}
};
typedef std::vector<line_descriptor::KeyLine> vector_KeyLine;
typedef std::vector<std::vector<line_descriptor::KeyLine> > vector_vector_KeyLine;
......@@ -368,7 +368,7 @@ namespace cv
}
else if(params.kernelType == CV_DENSE_CENSUS)
{
censusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_SPARSE_CENSUS);
censusTransform(left,right,params.kernelSize,censusImage[0],censusImage[1],CV_DENSE_CENSUS);
}
else if(params.kernelType == CV_CS_CENSUS)
{
......
......@@ -653,7 +653,7 @@ namespace cv
}
else if(params.kernelType == CV_DENSE_CENSUS)
{
censusTransform(left,right,params.kernelSize,censusImageLeft,censusImageRight,CV_SPARSE_CENSUS);
censusTransform(left,right,params.kernelSize,censusImageLeft,censusImageRight,CV_DENSE_CENSUS);
}
else if(params.kernelType == CV_CS_CENSUS)
{
......
......@@ -2687,7 +2687,8 @@ double MaxMeaningfulClustering::probability(vector<int> &cluster)
//for (int kk=0; kk<angles.size(); kk++)
// cout << angles[kk] << " ";
//cout << endl;
if (angles.empty() || edge_distances.empty())
return 0;
meanStdDev( angles, mean, std );
sample.push_back((float)std[0]);
sample.push_back((float)mean[0]);
......
#!/usr/bin/env python
'''
This example shows the functionalities of lines extraction finished by LSDDetector class.
USAGE: lsd_lines_extraction.py [<path_to_input_image>]
'''
import sys
import cv2 as cv
if __name__ == '__main__':
print(__doc__)
if len(sys.argv) > 1:
fname = sys.argv[1]
else :
fname = '../data/corridor.jpg'
img = cv.imread(fname)
if img is None:
print('Failed to load image file:', fname)
sys.exit(1)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
lsd = cv.line_descriptor_LSDDetector.createLSDDetector()
lines = lsd.detect(gray, 2, 1)
for kl in lines:
if kl.octave == 0:
# cv.line only accepts integer coordinate
pt1 = (int(kl.startPointX), int(kl.startPointY))
pt2 = (int(kl.endPointX), int(kl.endPointY))
cv.line(img, pt1, pt2, [255, 0, 0], 2)
cv.imshow('output', img)
cv.waitKey(0)
cv.destroyAllWindows()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment