Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
47f61f1c
Commit
47f61f1c
authored
Aug 13, 2014
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #40 from shahurik/adas
ADAS: multiple fixes, fcw_train and fcw_detect applications
parents
ffcda05c
93610f14
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
919 additions
and
449 deletions
+919
-449
CMakeLists.txt
modules/adas/tools/CMakeLists.txt
+2
-33
CMakeLists.txt
modules/adas/tools/fcw_detect/CMakeLists.txt
+35
-0
fcw_detect.cpp
modules/adas/tools/fcw_detect/fcw_detect.cpp
+92
-0
fcw_train.cpp
modules/adas/tools/fcw_train.cpp
+0
-195
CMakeLists.txt
modules/adas/tools/fcw_train/CMakeLists.txt
+35
-0
fcw_train.cpp
modules/adas/tools/fcw_train/fcw_train.cpp
+118
-0
xobjdetect.hpp
modules/xobjdetect/include/opencv2/xobjdetect.hpp
+61
-19
private.hpp
modules/xobjdetect/include/opencv2/xobjdetect/private.hpp
+24
-0
acffeature.cpp
modules/xobjdetect/src/acffeature.cpp
+171
-52
icfdetector.cpp
modules/xobjdetect/src/icfdetector.cpp
+153
-49
precomp.hpp
modules/xobjdetect/src/precomp.hpp
+2
-0
stump.cpp
modules/xobjdetect/src/stump.cpp
+85
-83
waldboost.cpp
modules/xobjdetect/src/waldboost.cpp
+141
-18
No files found.
modules/adas/tools/CMakeLists.txt
View file @
47f61f1c
set
(
name fcw_train
)
set
(
the_target opencv_
${
name
}
)
set
(
the_module opencv_adas
)
ocv_check_dependencies
(
${
OPENCV_MODULE_
${
the_module
}
_DEPS
}
)
if
(
NOT OCV_DEPENDENCIES_FOUND
)
return
()
endif
()
project
(
${
the_target
}
)
ocv_include_directories
(
"
${
OpenCV_SOURCE_DIR
}
/include/opencv"
)
ocv_include_modules
(
${
OPENCV_MODULE_
${
the_module
}
_DEPS
}
)
file
(
GLOB
${
the_target
}
_SOURCES
${
CMAKE_CURRENT_LIST_DIR
}
/*.cpp
)
add_executable
(
${
the_target
}
${${
the_target
}
_SOURCES
}
)
ocv_target_link_libraries
(
${
the_target
}
${
OPENCV_MODULE_
${
the_module
}
_DEPS
}
)
set_target_properties
(
${
the_target
}
PROPERTIES
DEBUG_POSTFIX
"
${
OPENCV_DEBUG_POSTFIX
}
"
ARCHIVE_OUTPUT_DIRECTORY
${
LIBRARY_OUTPUT_PATH
}
RUNTIME_OUTPUT_DIRECTORY
${
EXECUTABLE_OUTPUT_PATH
}
INSTALL_NAME_DIR lib
OUTPUT_NAME
${
the_target
}
)
if
(
ENABLE_SOLUTION_FOLDERS
)
set_target_properties
(
${
the_target
}
PROPERTIES FOLDER
"applications"
)
endif
()
install
(
TARGETS
${
the_target
}
RUNTIME DESTINATION bin COMPONENT main
)
add_subdirectory
(
fcw_train
)
add_subdirectory
(
fcw_detect
)
modules/adas/tools/fcw_detect/CMakeLists.txt
0 → 100644
View file @
47f61f1c
set
(
name fcw_detect
)
set
(
the_target opencv_
${
name
}
)
set
(
OPENCV_
${
the_target
}
_DEPS opencv_core opencv_imgcodecs opencv_videoio
opencv_highgui opencv_xobjdetect
)
ocv_check_dependencies
(
${
OPENCV_
${
the_target
}
_DEPS
}
)
if
(
NOT OCV_DEPENDENCIES_FOUND
)
return
()
endif
()
project
(
${
the_target
}
)
ocv_include_directories
(
"
${
OpenCV_SOURCE_DIR
}
/include/opencv"
)
ocv_include_modules
(
${
OPENCV_
${
the_target
}
_DEPS
}
)
file
(
GLOB
${
the_target
}
_SOURCES
${
CMAKE_CURRENT_SOURCE_DIR
}
/*.cpp
)
add_executable
(
${
the_target
}
${${
the_target
}
_SOURCES
}
)
target_link_libraries
(
${
the_target
}
${
OPENCV_
${
the_target
}
_DEPS
}
)
set_target_properties
(
${
the_target
}
PROPERTIES
DEBUG_POSTFIX
"
${
OPENCV_DEBUG_POSTFIX
}
"
ARCHIVE_OUTPUT_DIRECTORY
${
LIBRARY_OUTPUT_PATH
}
RUNTIME_OUTPUT_DIRECTORY
${
EXECUTABLE_OUTPUT_PATH
}
INSTALL_NAME_DIR lib
OUTPUT_NAME
${
the_target
}
)
if
(
ENABLE_SOLUTION_FOLDERS
)
set_target_properties
(
${
the_target
}
PROPERTIES FOLDER
"applications"
)
endif
()
install
(
TARGETS
${
the_target
}
RUNTIME DESTINATION bin COMPONENT main
)
modules/adas/tools/fcw_detect/fcw_detect.cpp
0 → 100644
View file @
47f61f1c
#include <string>
using
std
::
string
;
#include <vector>
using
std
::
vector
;
#include <iostream>
using
std
::
cerr
;
using
std
::
endl
;
#include <opencv2/core.hpp>
using
cv
::
Rect
;
using
cv
::
Size
;
using
cv
::
Mat
;
using
cv
::
Mat_
;
using
cv
::
Vec3b
;
#include <opencv2/highgui.hpp>
using
cv
::
imread
;
using
cv
::
imwrite
;
#include <opencv2/core/utility.hpp>
using
cv
::
CommandLineParser
;
using
cv
::
FileStorage
;
#include <opencv2/xobjdetect.hpp>
using
cv
::
xobjdetect
::
ICFDetector
;
static
Mat
visualize
(
const
Mat
&
image
,
const
vector
<
Rect
>
&
objects
)
{
CV_Assert
(
image
.
type
()
==
CV_8UC3
);
Mat_
<
Vec3b
>
img
=
image
.
clone
();
for
(
size_t
j
=
0
;
j
<
objects
.
size
();
++
j
)
{
Rect
obj
=
objects
[
j
];
int
x
=
obj
.
x
;
int
y
=
obj
.
y
;
int
width
=
obj
.
width
;
int
height
=
obj
.
height
;
for
(
int
i
=
y
;
i
<=
y
+
height
;
++
i
)
{
img
(
i
,
x
)
=
Vec3b
(
255
,
0
,
0
);
img
(
i
,
x
+
width
)
=
Vec3b
(
255
,
0
,
0
);
}
for
(
int
i
=
x
;
i
<=
x
+
width
;
++
i
)
{
img
(
y
,
i
)
=
Vec3b
(
255
,
0
,
0
);
img
(
y
+
height
,
i
)
=
Vec3b
(
255
,
0
,
0
);
}
}
return
img
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
const
string
keys
=
"{help | | print this message}"
"{model_filename | model.xml | filename for reading model}"
"{image_path | test.png | path to image for detection}"
"{out_image_path | out.png | path to image for output}"
"{threshold | 0.0 | threshold for cascade}"
;
CommandLineParser
parser
(
argc
,
argv
,
keys
);
parser
.
about
(
"FCW detection"
);
if
(
parser
.
has
(
"help"
)
||
argc
==
1
)
{
parser
.
printMessage
();
return
0
;
}
string
model_filename
=
parser
.
get
<
string
>
(
"model_filename"
);
string
image_path
=
parser
.
get
<
string
>
(
"image_path"
);
string
out_image_path
=
parser
.
get
<
string
>
(
"out_image_path"
);
float
threshold
=
parser
.
get
<
float
>
(
"threshold"
);
if
(
!
parser
.
check
()
)
{
parser
.
printErrors
();
return
1
;
}
ICFDetector
detector
;
FileStorage
fs
(
model_filename
,
FileStorage
::
READ
);
detector
.
read
(
fs
[
"icfdetector"
]);
fs
.
release
();
vector
<
Rect
>
objects
;
Mat
img
=
imread
(
image_path
);
detector
.
detect
(
img
,
objects
,
1.1
f
,
Size
(
40
,
40
),
Size
(
300
,
300
),
threshold
);
imwrite
(
out_image_path
,
visualize
(
img
,
objects
));
}
modules/adas/tools/fcw_train.cpp
deleted
100644 → 0
View file @
ffcda05c
#include <cstdio>
#include <cstring>
#include <string>
using
std
::
string
;
#include <vector>
using
std
::
vector
;
#include <fstream>
using
std
::
ifstream
;
using
std
::
getline
;
#include <sstream>
using
std
::
stringstream
;
#include <iostream>
using
std
::
cerr
;
using
std
::
endl
;
#include <opencv2/core.hpp>
using
cv
::
Rect
;
#include <opencv2/xobjdetect.hpp>
using
cv
::
xobjdetect
::
ICFDetectorParams
;
using
cv
::
xobjdetect
::
ICFDetector
;
using
cv
::
xobjdetect
::
WaldBoost
;
using
cv
::
xobjdetect
::
WaldBoostParams
;
using
cv
::
Mat
;
static
bool
read_pos_int
(
const
char
*
str
,
int
*
n
)
{
int
pos
=
0
;
if
(
sscanf
(
str
,
"%d%n"
,
n
,
&
pos
)
!=
1
||
str
[
pos
]
!=
'\0'
||
*
n
<=
0
)
{
return
false
;
}
return
true
;
}
static
bool
read_model_size
(
char
*
str
,
int
*
rows
,
int
*
cols
)
{
int
pos
=
0
;
if
(
sscanf
(
str
,
"%dx%d%n"
,
rows
,
cols
,
&
pos
)
!=
2
||
str
[
pos
]
!=
'\0'
||
*
rows
<=
0
||
*
cols
<=
0
)
{
return
false
;
}
return
true
;
}
static
bool
read_overlap
(
const
char
*
str
,
double
*
overlap
)
{
int
pos
=
0
;
if
(
sscanf
(
str
,
"%lf%n"
,
overlap
,
&
pos
)
!=
1
||
str
[
pos
]
!=
'\0'
||
*
overlap
<
0
||
*
overlap
>
1
)
{
return
false
;
}
return
true
;
}
static
bool
read_labels
(
const
string
&
path
,
vector
<
string
>&
filenames
,
vector
<
vector
<
Rect
>
>&
labels
)
{
string
labels_path
=
path
+
"/gt.txt"
;
string
filename
,
line
;
int
x1
,
y1
,
x2
,
y2
;
char
delim
;
ifstream
ifs
(
labels_path
.
c_str
());
if
(
!
ifs
.
good
()
)
return
false
;
while
(
getline
(
ifs
,
line
)
)
{
stringstream
stream
(
line
);
stream
>>
filename
;
filenames
.
push_back
(
path
+
"/"
+
filename
);
vector
<
Rect
>
filename_labels
;
while
(
stream
>>
x1
>>
y1
>>
x2
>>
y2
>>
delim
)
{
filename_labels
.
push_back
(
Rect
(
x1
,
y1
,
x2
,
y2
));
}
labels
.
push_back
(
filename_labels
);
filename_labels
.
clear
();
}
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
==
1
)
{
printf
(
"Usage: %s OPTIONS, where OPTIONS are:
\n
"
"
\n
"
"--path <path> - path to dir with data and labels
\n
"
" (labels should have name gt.txt)
\n
"
"
\n
"
"--feature_count <count> - number of features to generate
\n
"
"
\n
"
"--weak_count <count> - number of weak classifiers in cascade
\n
"
"
\n
"
"--model_size <rowsxcols> - model size in pixels
\n
"
"
\n
"
"--overlap <measure> - number from [0, 1], means maximum
\n
"
" overlap with objects while sampling background
\n
"
"
\n
"
"--model_filename <path> - filename for saving model
\n
"
,
argv
[
0
]);
return
0
;
}
string
path
,
model_path
;
ICFDetectorParams
params
;
for
(
int
i
=
1
;
i
<
argc
;
++
i
)
{
if
(
!
strcmp
(
"--path"
,
argv
[
i
])
)
{
i
+=
1
;
path
=
argv
[
i
];
}
else
if
(
!
strcmp
(
"--feature_count"
,
argv
[
i
])
)
{
i
+=
1
;
if
(
!
read_pos_int
(
argv
[
i
],
&
params
.
feature_count
)
)
{
fprintf
(
stderr
,
"Error reading feature count from `%s`
\n
"
,
argv
[
i
]);
return
1
;
}
}
else
if
(
!
strcmp
(
"--weak_count"
,
argv
[
i
])
)
{
i
+=
1
;
if
(
!
read_pos_int
(
argv
[
i
],
&
params
.
weak_count
)
)
{
fprintf
(
stderr
,
"Error reading weak count from `%s`
\n
"
,
argv
[
i
]);
return
1
;
}
}
else
if
(
!
strcmp
(
"--model_size"
,
argv
[
i
])
)
{
i
+=
1
;
if
(
!
read_model_size
(
argv
[
i
],
&
params
.
model_n_rows
,
&
params
.
model_n_cols
)
)
{
fprintf
(
stderr
,
"Error reading model size from `%s`
\n
"
,
argv
[
i
]);
return
1
;
}
}
else
if
(
!
strcmp
(
"--overlap"
,
argv
[
i
])
)
{
i
+=
1
;
if
(
!
read_overlap
(
argv
[
i
],
&
params
.
overlap
)
)
{
fprintf
(
stderr
,
"Error reading overlap from `%s`
\n
"
,
argv
[
i
]);
return
1
;
}
}
else
if
(
!
strcmp
(
"--model_filename"
,
argv
[
i
])
)
{
i
+=
1
;
model_path
=
argv
[
i
];
}
else
{
fprintf
(
stderr
,
"Error: unknown argument `%s`
\n
"
,
argv
[
i
]);
return
1
;
}
}
try
{
ICFDetector
detector
;
vector
<
string
>
filenames
;
vector
<
vector
<
Rect
>
>
labels
;
read_labels
(
path
,
filenames
,
labels
);
detector
.
train
(
filenames
,
labels
,
params
);
}
catch
(
const
char
*
err
)
{
cerr
<<
err
<<
endl
;
}
catch
(
...
)
{
cerr
<<
"Unknown error
\n
"
<<
endl
;
}
}
modules/adas/tools/fcw_train/CMakeLists.txt
0 → 100644
View file @
47f61f1c
set
(
name fcw_train
)
set
(
the_target opencv_
${
name
}
)
set
(
OPENCV_
${
the_target
}
_DEPS opencv_core opencv_imgcodecs opencv_videoio
opencv_highgui opencv_xobjdetect
)
ocv_check_dependencies
(
${
OPENCV_
${
the_target
}
_DEPS
}
)
if
(
NOT OCV_DEPENDENCIES_FOUND
)
return
()
endif
()
project
(
${
the_target
}
)
ocv_include_directories
(
"
${
OpenCV_SOURCE_DIR
}
/include/opencv"
)
ocv_include_modules
(
${
OPENCV_
${
the_target
}
_DEPS
}
)
file
(
GLOB
${
the_target
}
_SOURCES
${
CMAKE_CURRENT_SOURCE_DIR
}
/*.cpp
)
add_executable
(
${
the_target
}
${${
the_target
}
_SOURCES
}
)
target_link_libraries
(
${
the_target
}
${
OPENCV_
${
the_target
}
_DEPS
}
)
set_target_properties
(
${
the_target
}
PROPERTIES
DEBUG_POSTFIX
"
${
OPENCV_DEBUG_POSTFIX
}
"
ARCHIVE_OUTPUT_DIRECTORY
${
LIBRARY_OUTPUT_PATH
}
RUNTIME_OUTPUT_DIRECTORY
${
EXECUTABLE_OUTPUT_PATH
}
INSTALL_NAME_DIR lib
OUTPUT_NAME
${
the_target
}
)
if
(
ENABLE_SOLUTION_FOLDERS
)
set_target_properties
(
${
the_target
}
PROPERTIES FOLDER
"applications"
)
endif
()
install
(
TARGETS
${
the_target
}
RUNTIME DESTINATION bin COMPONENT main
)
modules/adas/tools/fcw_train/fcw_train.cpp
0 → 100644
View file @
47f61f1c
#include <cstdio>
#include <cstring>
#include <string>
using
std
::
string
;
#include <vector>
using
std
::
vector
;
#include <fstream>
using
std
::
ifstream
;
using
std
::
getline
;
#include <sstream>
using
std
::
stringstream
;
#include <iostream>
using
std
::
cerr
;
using
std
::
endl
;
#include <opencv2/core.hpp>
using
cv
::
Rect
;
using
cv
::
Size
;
#include <opencv2/highgui.hpp>
using
cv
::
imread
;
#include <opencv2/core/utility.hpp>
using
cv
::
CommandLineParser
;
using
cv
::
FileStorage
;
#include <opencv2/xobjdetect.hpp>
using
cv
::
xobjdetect
::
ICFDetectorParams
;
using
cv
::
xobjdetect
::
ICFDetector
;
using
cv
::
xobjdetect
::
WaldBoost
;
using
cv
::
xobjdetect
::
WaldBoostParams
;
using
cv
::
Mat
;
static
bool
read_model_size
(
const
char
*
str
,
int
*
rows
,
int
*
cols
)
{
int
pos
=
0
;
if
(
sscanf
(
str
,
"%dx%d%n"
,
rows
,
cols
,
&
pos
)
!=
2
||
str
[
pos
]
!=
'\0'
||
*
rows
<=
0
||
*
cols
<=
0
)
{
return
false
;
}
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
const
string
keys
=
"{help | | print this message}"
"{pos_path | pos | path to training object samples}"
"{bg_path | bg | path to background images}"
"{bg_per_image | 5 | number of windows to sample per bg image}"
"{feature_count | 10000 | number of features to generate}"
"{weak_count | 100 | number of weak classifiers in cascade}"
"{model_size | 40x40 | model size in pixels}"
"{model_filename | model.xml | filename for saving model}"
;
CommandLineParser
parser
(
argc
,
argv
,
keys
);
parser
.
about
(
"FCW trainer"
);
if
(
parser
.
has
(
"help"
)
||
argc
==
1
)
{
parser
.
printMessage
();
return
0
;
}
string
pos_path
=
parser
.
get
<
string
>
(
"pos_path"
);
string
bg_path
=
parser
.
get
<
string
>
(
"bg_path"
);
string
model_filename
=
parser
.
get
<
string
>
(
"model_filename"
);
ICFDetectorParams
params
;
params
.
feature_count
=
parser
.
get
<
int
>
(
"feature_count"
);
params
.
weak_count
=
parser
.
get
<
int
>
(
"weak_count"
);
params
.
bg_per_image
=
parser
.
get
<
int
>
(
"bg_per_image"
);
string
model_size
=
parser
.
get
<
string
>
(
"model_size"
);
if
(
!
read_model_size
(
model_size
.
c_str
(),
&
params
.
model_n_rows
,
&
params
.
model_n_cols
)
)
{
cerr
<<
"Error reading model size from `"
<<
model_size
<<
"`"
<<
endl
;
return
1
;
}
if
(
params
.
feature_count
<=
0
)
{
cerr
<<
"feature_count must be positive number"
<<
endl
;
return
1
;
}
if
(
params
.
weak_count
<=
0
)
{
cerr
<<
"weak_count must be positive number"
<<
endl
;
return
1
;
}
if
(
params
.
bg_per_image
<=
0
)
{
cerr
<<
"bg_per_image must be positive number"
<<
endl
;
return
1
;
}
if
(
!
parser
.
check
()
)
{
parser
.
printErrors
();
return
1
;
}
ICFDetector
detector
;
detector
.
train
(
pos_path
,
bg_path
,
params
);
FileStorage
fs
(
model_filename
,
FileStorage
::
WRITE
);
fs
<<
"icfdetector"
;
detector
.
write
(
fs
);
fs
.
release
();
}
modules/xobjdetect/include/opencv2/xobjdetect.hpp
View file @
47f61f1c
...
...
@@ -58,9 +58,9 @@ namespace xobjdetect
channels — output array for computed channels
*/
void
computeChannels
(
InputArray
image
,
OutputArrayOfArrays
channels
);
CV_EXPORTS
void
computeChannels
(
InputArray
image
,
std
::
vector
<
Mat
>&
channels
);
class
CV_EXPORTS
ACF
FeatureEvaluator
:
public
Algorithm
class
CV_EXPORTS
FeatureEvaluator
:
public
Algorithm
{
public
:
/* Set channels for feature evaluation */
...
...
@@ -79,23 +79,28 @@ public:
*/
virtual
void
evaluateAll
(
OutputArray
feature_values
)
const
=
0
;
virtual
void
assertChannels
()
=
0
;
};
/* Construct evaluator, set features to evaluate */
CV_EXPORTS
Ptr
<
ACFFeatureEvaluator
>
createACFFeatureEvaluator
(
const
std
::
vector
<
Point3i
>&
features
);
/* Construct feature evaluator, set features to evaluate
type can "icf" or "acf" */
CV_EXPORTS
Ptr
<
FeatureEvaluator
>
createFeatureEvaluator
(
const
std
::
vector
<
std
::
vector
<
int
>
>&
features
,
const
std
::
string
&
type
);
/* Generate acf features
window_size — size of window in which features should be evaluated
type — type of features, can be "icf" or "acf"
count — number of features to generate.
Max number of features is min(count, # possible distinct features)
Returns vector of distinct acf features
*/
std
::
vector
<
Point3i
>
generateFeatures
(
Size
window_size
,
int
count
=
INT_MAX
);
std
::
vector
<
std
::
vector
<
int
>
>
generateFeatures
(
Size
window_size
,
const
std
::
string
&
type
,
int
count
=
INT_MAX
,
int
channel_count
=
10
);
struct
CV_EXPORTS
WaldBoostParams
...
...
@@ -103,7 +108,7 @@ struct CV_EXPORTS WaldBoostParams
int
weak_count
;
float
alpha
;
WaldBoostParams
()
:
weak_count
(
100
),
alpha
(
0.0
1
f
)
WaldBoostParams
()
:
weak_count
(
100
),
alpha
(
0.0
2
f
)
{}
};
...
...
@@ -122,8 +127,8 @@ public:
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
virtual
std
::
vector
<
int
>
train
(
const
Mat
&
data
,
const
Mat
&
labels
)
=
0
;
virtual
std
::
vector
<
int
>
train
(
const
Mat
&
/*data*/
,
const
Mat
&
/*labels*/
)
=
0
;
/* Predict object class given object that can compute object features
...
...
@@ -133,8 +138,13 @@ public:
is from class +1
*/
virtual
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
const
=
0
;
const
Ptr
<
FeatureEvaluator
>&
/*feature_evaluator*/
)
const
=
0
;
/* Write WaldBoost to FileStorage */
virtual
void
write
(
FileStorage
&
/*fs*/
)
const
=
0
;
/* Read WaldBoost */
virtual
void
read
(
const
FileNode
&
/*node*/
)
=
0
;
};
CV_EXPORTS
Ptr
<
WaldBoost
>
...
...
@@ -146,32 +156,64 @@ struct CV_EXPORTS ICFDetectorParams
int
weak_count
;
int
model_n_rows
;
int
model_n_cols
;
double
overlap
;
int
bg_per_image
;
ICFDetectorParams
()
:
feature_count
(
UINT_MAX
),
weak_count
(
100
),
model_n_rows
(
40
),
model_n_cols
(
40
),
overlap
(
0.0
)
model_n_rows
(
56
),
model_n_cols
(
56
),
bg_per_image
(
5
)
{}
};
class
CV_EXPORTS
ICFDetector
{
public
:
ICFDetector
()
:
waldboost_
(),
features_
()
{}
/* Train detector
image_filenames — filenames of images for training
pos_path — path to folder with images of objects
labelling — vector of object bounding boxes per every image
bg_path — path to folder with background images
params — parameters for detector training
*/
void
train
(
const
std
::
vector
<
std
::
string
>&
image_filenames
,
const
std
::
vector
<
std
::
vector
<
cv
::
Rect
>
>&
labelling
,
void
train
(
const
String
&
pos_path
,
const
String
&
bg_path
,
ICFDetectorParams
params
=
ICFDetectorParams
());
/* Save detector in file, return true on success, false otherwise */
bool
save
(
const
std
::
string
&
filename
);
/* Detect object on image
image — image for detection
object — output array of bounding boxes
scaleFactor — scale between layers in detection pyramid
minSize — min size of objects in pixels
maxSize — max size of objects in pixels
*/
void
detect
(
const
Mat
&
image
,
std
::
vector
<
Rect
>&
objects
,
float
scaleFactor
,
Size
minSize
,
Size
maxSize
,
float
threshold
);
/* Write detector to FileStorage */
void
write
(
FileStorage
&
fs
)
const
;
/* Read detector */
void
read
(
const
FileNode
&
node
);
private
:
Ptr
<
WaldBoost
>
waldboost_
;
std
::
vector
<
std
::
vector
<
int
>
>
features_
;
int
model_n_rows_
;
int
model_n_cols_
;
};
CV_EXPORTS
void
write
(
FileStorage
&
fs
,
String
&
,
const
ICFDetector
&
detector
);
CV_EXPORTS
void
read
(
const
FileNode
&
node
,
ICFDetector
&
d
,
const
ICFDetector
&
default_value
=
ICFDetector
());
}
/* namespace xobjdetect */
}
/* namespace cv */
...
...
modules/xobjdetect/include/opencv2/xobjdetect/private.hpp
View file @
47f61f1c
...
...
@@ -47,6 +47,26 @@ public:
*/
float
predict
(
int
value
)
const
;
/* Write stump in FileStorage */
void
write
(
FileStorage
&
fs
)
const
{
fs
<<
"{"
<<
"threshold"
<<
threshold_
<<
"polarity"
<<
polarity_
<<
"pos_value"
<<
pos_value_
<<
"neg_value"
<<
neg_value_
<<
"}"
;
}
/* Read stump */
void
read
(
const
FileNode
&
node
)
{
threshold_
=
(
int
)
node
[
"threshold"
];
polarity_
=
(
int
)
node
[
"polarity"
];
pos_value_
=
(
float
)
node
[
"pos_value"
];
neg_value_
=
(
float
)
node
[
"neg_value"
];
}
private
:
/* Stump decision threshold */
int
threshold_
;
...
...
@@ -56,6 +76,10 @@ private:
float
pos_value_
,
neg_value_
;
};
void
read
(
const
FileNode
&
node
,
Stump
&
s
,
const
Stump
&
default_value
=
Stump
());
void
write
(
FileStorage
&
fs
,
String
&
,
const
Stump
&
s
);
}
/* namespace xobjdetect */
}
/* namespace cv */
...
...
modules/xobjdetect/src/acffeature.cpp
View file @
47f61f1c
...
...
@@ -54,39 +54,131 @@ namespace cv
namespace
xobjdetect
{
class
ACFFeatureEvaluatorImpl
:
public
ACFFeatureEvaluator
static
bool
isNull
(
const
Mat_
<
int
>
&
m
)
{
bool
null_data
=
true
;
for
(
int
row
=
0
;
row
<
m
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
m
.
cols
;
++
col
)
if
(
m
.
at
<
int
>
(
row
,
col
)
)
null_data
=
false
;
}
return
null_data
;
}
class
FeatureEvaluatorImpl
:
public
FeatureEvaluator
{
public
:
ACFFeatureEvaluatorImpl
(
const
vector
<
Point3i
>&
features
)
:
FeatureEvaluatorImpl
(
const
vector
<
vector
<
int
>
>&
features
)
:
features_
(
features
),
channels_
(),
position_
()
{
CV_Assert
(
features
.
size
()
>
0
);
}
virtual
void
setChannels
(
InputArrayOfArrays
channels
);
virtual
void
setPosition
(
Size
position
);
virtual
int
evaluate
(
size_t
feature_ind
)
const
;
virtual
void
evaluateAll
(
OutputArray
feature_values
)
const
;
virtual
void
assertChannels
()
{
bool
null_data
=
true
;
for
(
size_t
i
=
0
;
i
<
channels_
.
size
();
++
i
)
null_data
&=
isNull
(
channels_
[
i
]);
CV_Assert
(
!
null_data
);
}
private
:
virtual
void
evaluateAll
(
OutputArray
feature_values
)
const
{
Mat_
<
int
>
feature_vals
(
1
,
(
int
)
features_
.
size
());
for
(
int
i
=
0
;
i
<
(
int
)
features_
.
size
();
++
i
)
{
feature_vals
(
0
,
i
)
=
evaluate
(
i
);
}
feature_values
.
assign
(
feature_vals
);
}
protected
:
/* Features to evaluate */
std
::
vector
<
Point3i
>
features_
;
vector
<
vector
<
int
>
>
features_
;
/* Channels for feature evaluation */
std
::
vector
<
Mat
>
channels_
;
/* Channels window position */
Size
position_
;
};
void
ACFFeatureEvaluatorImpl
::
setChannels
(
cv
::
InputArrayOfArrays
channels
)
class
ICFFeatureEvaluatorImpl
:
public
FeatureEvaluatorImpl
{
public
:
ICFFeatureEvaluatorImpl
(
const
vector
<
vector
<
int
>
>&
features
)
:
FeatureEvaluatorImpl
(
features
)
{
}
virtual
void
setChannels
(
InputArrayOfArrays
channels
);
virtual
void
setPosition
(
Size
position
);
virtual
int
evaluate
(
size_t
feature_ind
)
const
;
};
void
ICFFeatureEvaluatorImpl
::
setChannels
(
InputArrayOfArrays
channels
)
{
channels_
.
clear
();
vector
<
Mat
>
ch
;
channels
.
getMatVector
(
ch
);
CV_Assert
(
ch
.
size
()
==
10
);
for
(
size_t
i
=
0
;
i
<
ch
.
size
();
++
i
)
{
const
Mat
&
channel
=
ch
[
i
];
Mat_
<
int
>
acf_channel
(
channel
.
rows
/
4
,
channel
.
cols
/
4
);
Mat
integral_channel
;
integral
(
channel
,
integral_channel
,
CV_32F
);
Mat_
<
int
>
chan
(
integral_channel
.
rows
,
integral_channel
.
cols
);
for
(
int
row
=
0
;
row
<
integral_channel
.
rows
;
++
row
)
for
(
int
col
=
0
;
col
<
integral_channel
.
cols
;
++
col
)
chan
(
row
,
col
)
=
(
int
)
integral_channel
.
at
<
float
>
(
row
,
col
);
channels_
.
push_back
(
chan
.
clone
());
}
}
void
ICFFeatureEvaluatorImpl
::
setPosition
(
Size
position
)
{
position_
=
position
;
}
int
ICFFeatureEvaluatorImpl
::
evaluate
(
size_t
feature_ind
)
const
{
CV_Assert
(
channels_
.
size
()
==
10
);
CV_Assert
(
feature_ind
<
features_
.
size
());
const
vector
<
int
>&
feature
=
features_
[
feature_ind
];
int
x
=
feature
[
0
]
+
position_
.
height
;
int
y
=
feature
[
1
]
+
position_
.
width
;
int
x_to
=
feature
[
2
]
+
position_
.
height
;
int
y_to
=
feature
[
3
]
+
position_
.
width
;
int
n
=
feature
[
4
];
const
Mat_
<
int
>&
ch
=
channels_
[
n
];
return
ch
(
y_to
+
1
,
x_to
+
1
)
-
ch
(
y
,
x_to
+
1
)
-
ch
(
y_to
+
1
,
x
)
+
ch
(
y
,
x
);
}
class
ACFFeatureEvaluatorImpl
:
public
FeatureEvaluatorImpl
{
public
:
ACFFeatureEvaluatorImpl
(
const
vector
<
vector
<
int
>
>&
features
)
:
FeatureEvaluatorImpl
(
features
)
{
}
virtual
void
setChannels
(
InputArrayOfArrays
channels
);
virtual
void
setPosition
(
Size
position
);
virtual
int
evaluate
(
size_t
feature_ind
)
const
;
};
void
ACFFeatureEvaluatorImpl
::
setChannels
(
InputArrayOfArrays
channels
)
{
channels_
.
clear
();
vector
<
Mat
>
ch
;
channels
.
getMatVector
(
ch
);
CV_Assert
(
ch
.
size
()
==
10
);
for
(
size_t
i
=
0
;
i
<
ch
.
size
();
++
i
)
{
const
Mat
&
channel
=
ch
[
i
];
Mat_
<
int
>
acf_channel
=
Mat_
<
int
>::
zeros
(
channel
.
rows
/
4
,
channel
.
cols
/
4
);
for
(
int
row
=
0
;
row
<
channel
.
rows
;
row
+=
4
)
{
for
(
int
col
=
0
;
col
<
channel
.
cols
;
col
+=
4
)
...
...
@@ -99,13 +191,14 @@ void ACFFeatureEvaluatorImpl::setChannels(cv::InputArrayOfArrays channels)
acf_channel
(
row
/
4
,
col
/
4
)
=
sum
;
}
}
channels_
.
push_back
(
acf_channel
);
channels_
.
push_back
(
acf_channel
.
clone
());
}
}
void
ACFFeatureEvaluatorImpl
::
setPosition
(
Size
position
)
{
position_
=
position
;
position_
=
Size
(
position
.
width
/
4
,
position
.
height
/
4
)
;
}
int
ACFFeatureEvaluatorImpl
::
evaluate
(
size_t
feature_ind
)
const
...
...
@@ -113,60 +206,78 @@ int ACFFeatureEvaluatorImpl::evaluate(size_t feature_ind) const
CV_Assert
(
channels_
.
size
()
==
10
);
CV_Assert
(
feature_ind
<
features_
.
size
());
Point3i
feature
=
features_
.
at
(
feature_ind
)
;
int
x
=
feature
.
x
;
int
y
=
feature
.
y
;
int
n
=
feature
.
z
;
return
channels_
[
n
].
at
<
int
>
(
y
,
x
);
const
vector
<
int
>&
feature
=
features_
[
feature_ind
]
;
int
x
=
feature
[
0
]
;
int
y
=
feature
[
1
]
;
int
n
=
feature
[
2
]
;
return
channels_
[
n
].
at
<
int
>
(
y
+
position_
.
width
,
x
+
position_
.
height
);
}
void
ACFFeatureEvaluatorImpl
::
evaluateAll
(
OutputArray
feature_values
)
const
Ptr
<
FeatureEvaluator
>
createFeatureEvaluator
(
const
vector
<
vector
<
int
>
>&
features
,
const
std
::
string
&
type
)
{
Mat_
<
int
>
feature_vals
(
1
,
(
int
)
features_
.
size
());
for
(
int
i
=
0
;
i
<
(
int
)
features_
.
size
();
++
i
)
{
feature_vals
(
0
,
i
)
=
evaluate
(
i
);
}
feature_values
.
setTo
(
feature_vals
);
FeatureEvaluator
*
evaluator
=
NULL
;
if
(
type
==
"acf"
)
evaluator
=
new
ACFFeatureEvaluatorImpl
(
features
);
else
if
(
type
==
"icf"
)
evaluator
=
new
ICFFeatureEvaluatorImpl
(
features
);
else
CV_Error
(
CV_StsBadArg
,
"type value is either acf or icf"
);
return
Ptr
<
FeatureEvaluator
>
(
evaluator
);
}
Ptr
<
ACFFeatureEvaluator
>
createACFFeatureEvaluator
(
const
vector
<
Point3i
>&
features
)
{
return
Ptr
<
ACFFeatureEvaluator
>
(
new
ACFFeatureEvaluatorImpl
(
features
));
}
vector
<
Point3i
>
generateFeatures
(
Size
window_size
,
int
count
)
vector
<
vector
<
int
>
>
generateFeatures
(
Size
window_size
,
const
std
::
string
&
type
,
int
count
,
int
channel_count
)
{
CV_Assert
(
count
>
0
);
int
cur_count
=
0
;
int
max_count
=
window_size
.
width
*
window_size
.
height
/
16
;
count
=
min
(
count
,
max_count
);
vector
<
Point3i
>
features
;
for
(
int
x
=
0
;
x
<
window_size
.
width
/
4
;
++
x
)
vector
<
vector
<
int
>
>
features
;
if
(
type
==
"acf"
)
{
int
cur_count
=
0
;
int
max_count
=
window_size
.
width
*
window_size
.
height
/
16
;
count
=
min
(
count
,
max_count
);
for
(
int
x
=
0
;
x
<
window_size
.
width
/
4
;
++
x
)
for
(
int
y
=
0
;
y
<
window_size
.
height
/
4
;
++
y
)
for
(
int
n
=
0
;
n
<
channel_count
;
++
n
)
{
int
f
[]
=
{
x
,
y
,
n
};
vector
<
int
>
feature
(
f
,
f
+
sizeof
(
f
)
/
sizeof
(
*
f
));
features
.
push_back
(
feature
);
if
(
(
cur_count
+=
1
)
==
count
)
break
;
}
}
else
if
(
type
==
"icf"
)
{
for
(
int
y
=
0
;
y
<
window_size
.
height
/
4
;
++
y
)
RNG
rng
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
/* Assume there are 10 channel types */
for
(
int
n
=
0
;
n
<
10
;
++
n
)
{
features
.
push_back
(
Point3i
(
x
,
y
,
n
));
if
(
(
cur_count
+=
1
)
==
count
)
break
;
}
int
x
=
rng
.
uniform
(
0
,
window_size
.
width
-
1
);
int
y
=
rng
.
uniform
(
0
,
window_size
.
height
-
1
);
int
x_to
=
rng
.
uniform
(
x
,
window_size
.
width
-
1
);
int
y_to
=
rng
.
uniform
(
y
,
window_size
.
height
-
1
);
int
n
=
rng
.
uniform
(
0
,
channel_count
-
1
);
int
f
[]
=
{
x
,
y
,
x_to
,
y_to
,
n
};
vector
<
int
>
feature
(
f
,
f
+
sizeof
(
f
)
/
sizeof
(
*
f
));
features
.
push_back
(
feature
);
}
}
else
CV_Error
(
CV_StsBadArg
,
"type value is either acf or icf"
);
return
features
;
}
void
computeChannels
(
cv
::
InputArray
image
,
cv
::
OutputArrayOfArrays
channels_
)
void
computeChannels
(
InputArray
image
,
vector
<
Mat
>&
channels
)
{
Mat
src
(
image
.
getMat
().
rows
,
image
.
getMat
().
cols
,
CV_32FC3
);
image
.
getMat
().
convertTo
(
src
,
CV_32FC3
,
1.
/
255
);
Mat_
<
float
>
grad
;
Mat
gray
;
Mat
luv
,
gray
;
cvtColor
(
src
,
gray
,
CV_RGB2GRAY
);
cvtColor
(
src
,
luv
,
CV_RGB2Luv
);
Mat_
<
float
>
row_der
,
col_der
;
Sobel
(
gray
,
row_der
,
CV_32F
,
0
,
1
);
...
...
@@ -174,7 +285,7 @@ void computeChannels(cv::InputArray image, cv::OutputArrayOfArrays channels_)
magnitude
(
row_der
,
col_der
,
grad
);
Mat_
<
Vec6f
>
hist
(
grad
.
rows
,
grad
.
cols
);
Mat_
<
Vec6f
>
hist
=
Mat_
<
Vec6f
>::
zeros
(
grad
.
rows
,
grad
.
cols
);
const
float
to_deg
=
180
/
3.1415926
f
;
for
(
int
row
=
0
;
row
<
grad
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
grad
.
cols
;
++
col
)
{
...
...
@@ -182,12 +293,22 @@ void computeChannels(cv::InputArray image, cv::OutputArrayOfArrays channels_)
if
(
angle
<
0
)
angle
+=
180
;
int
ind
=
(
int
)(
angle
/
30
);
hist
(
row
,
col
)[
ind
]
=
grad
(
row
,
col
);
// If angle == 180, prevent index overflow
if
(
ind
==
6
)
ind
=
5
;
hist
(
row
,
col
)[
ind
]
=
grad
(
row
,
col
)
*
255
;
}
}
vector
<
Mat
>
channels
;
channels
.
push_back
(
gray
);
channels
.
clear
();
Mat
luv_channels
[
3
];
split
(
luv
,
luv_channels
);
for
(
int
i
=
0
;
i
<
3
;
++
i
)
channels
.
push_back
(
luv_channels
[
i
]);
channels
.
push_back
(
grad
);
vector
<
Mat
>
hist_channels
;
...
...
@@ -195,8 +316,6 @@ void computeChannels(cv::InputArray image, cv::OutputArrayOfArrays channels_)
for
(
size_t
i
=
0
;
i
<
hist_channels
.
size
();
++
i
)
channels
.
push_back
(
hist_channels
[
i
]);
channels_
.
setTo
(
channels
);
}
}
/* namespace xobjdetect */
...
...
modules/xobjdetect/src/icfdetector.cpp
View file @
47f61f1c
...
...
@@ -39,6 +39,17 @@ the use of this software, even if advised of the possibility of such damage.
*/
#include <sstream>
using
std
::
ostringstream
;
#include <iomanip>
using
std
::
setfill
;
using
std
::
setw
;
#include <iostream>
using
std
::
cout
;
using
std
::
endl
;
#include "precomp.hpp"
using
std
::
vector
;
...
...
@@ -52,47 +63,41 @@ namespace cv
namespace
xobjdetect
{
static
bool
overlap
(
const
Rect
&
r
,
const
vector
<
Rect
>&
gt
)
{
for
(
size_t
i
=
0
;
i
<
gt
.
size
();
++
i
)
if
(
(
r
&
gt
[
i
]).
area
()
)
return
true
;
return
false
;
}
void
ICFDetector
::
train
(
const
vector
<
string
>&
image_filenames
,
const
vector
<
vector
<
Rect
>
>&
labelling
,
void
ICFDetector
::
train
(
const
String
&
pos_path
,
const
String
&
bg_path
,
ICFDetectorParams
params
)
{
vector
<
String
>
pos_filenames
;
glob
(
pos_path
+
"/*.png"
,
pos_filenames
);
vector
<
String
>
bg_filenames
;
glob
(
bg_path
+
"/*.jpg"
,
bg_filenames
);
model_n_rows_
=
params
.
model_n_rows
;
model_n_cols_
=
params
.
model_n_cols
;
Size
model_size
(
params
.
model_n_cols
,
params
.
model_n_rows
);
vector
<
Mat
>
samples
;
/* positive samples + negative samples */
Mat
sample
,
resized_sample
;
int
pos_count
=
0
;
for
(
size_t
i
=
0
;
i
<
image_filenames
.
size
();
++
i
,
++
pos_count
)
{
Mat
img
=
imread
(
String
(
image_filenames
[
i
].
c_str
()));
for
(
size_t
j
=
0
;
j
<
labelling
[
i
].
size
();
++
j
)
{
Rect
r
=
labelling
[
i
][
j
];
if
(
r
.
x
>
img
.
cols
||
r
.
y
>
img
.
rows
)
continue
;
sample
=
img
.
colRange
(
max
(
r
.
x
,
0
),
min
(
r
.
width
,
img
.
cols
))
.
rowRange
(
max
(
r
.
y
,
0
),
min
(
r
.
height
,
img
.
rows
));
resize
(
sample
,
resized_sample
,
model_size
);
samples
.
push_back
(
resized_sample
);
}
for
(
size_t
i
=
0
;
i
<
pos_filenames
.
size
();
++
i
,
++
pos_count
)
{
cout
<<
setw
(
6
)
<<
(
i
+
1
)
<<
"/"
<<
pos_filenames
.
size
()
<<
"
\r
"
;
Mat
img
=
imread
(
pos_filenames
[
i
]);
resize
(
img
,
resized_sample
,
model_size
);
samples
.
push_back
(
resized_sample
.
clone
());
}
cout
<<
"
\n
"
;
int
neg_count
=
0
;
RNG
rng
;
for
(
size_t
i
=
0
;
i
<
image
_filenames
.
size
();
++
i
)
for
(
size_t
i
=
0
;
i
<
bg
_filenames
.
size
();
++
i
)
{
Mat
img
=
imread
(
String
(
image_filenames
[
i
].
c_str
()));
for
(
int
j
=
0
;
j
<
(
int
)(
pos_count
/
image_filenames
.
size
()
+
1
);
)
cout
<<
setw
(
6
)
<<
(
i
+
1
)
<<
"/"
<<
bg_filenames
.
size
()
<<
"
\r
"
;
Mat
img
=
imread
(
bg_filenames
[
i
]);
for
(
int
j
=
0
;
j
<
params
.
bg_per_image
;
++
j
,
++
neg_count
)
{
Rect
r
;
r
.
x
=
rng
.
uniform
(
0
,
img
.
cols
);
...
...
@@ -100,16 +105,12 @@ void ICFDetector::train(const vector<string>& image_filenames,
r
.
y
=
rng
.
uniform
(
0
,
img
.
rows
);
r
.
height
=
rng
.
uniform
(
r
.
y
+
1
,
img
.
rows
);
if
(
!
overlap
(
r
,
labelling
[
i
])
)
{
sample
=
img
.
colRange
(
r
.
x
,
r
.
width
).
rowRange
(
r
.
y
,
r
.
height
);
//resize(sample, resized_sample);
samples
.
push_back
(
resized_sample
);
++
neg_count
;
++
j
;
}
sample
=
img
.
colRange
(
r
.
x
,
r
.
width
).
rowRange
(
r
.
y
,
r
.
height
);
resize
(
sample
,
resized_sample
,
model_size
);
samples
.
push_back
(
resized_sample
.
clone
());
}
}
cout
<<
"
\n
"
;
Mat_
<
int
>
labels
(
1
,
pos_count
+
neg_count
);
for
(
int
i
=
0
;
i
<
pos_count
;
++
i
)
...
...
@@ -117,33 +118,136 @@ void ICFDetector::train(const vector<string>& image_filenames,
for
(
int
i
=
pos_count
;
i
<
pos_count
+
neg_count
;
++
i
)
labels
(
0
,
i
)
=
-
1
;
vector
<
Point3i
>
features
=
generateFeatures
(
model_size
);
Ptr
<
ACFFeatureEvaluator
>
feature_evaluator
=
createACFFeatureEvaluator
(
features
);
vector
<
vector
<
int
>
>
features
=
generateFeatures
(
model_size
,
"icf"
,
params
.
feature_count
);
Ptr
<
FeatureEvaluator
>
evaluator
=
createFeatureEvaluator
(
features
,
"icf"
);
Mat_
<
int
>
data
((
int
)
features
.
size
(),
(
int
)
samples
.
size
());
Mat_
<
int
>
feature_col
;
Mat_
<
int
>
data
=
Mat_
<
int
>::
zeros
((
int
)
features
.
size
(),
(
int
)
samples
.
size
());
Mat_
<
int
>
feature_col
(
1
,
(
int
)
samples
.
size
())
;
vector
<
Mat
>
channels
;
for
(
int
i
=
0
;
i
<
(
int
)
samples
.
size
();
++
i
)
{
cout
<<
setw
(
6
)
<<
i
<<
"/"
<<
samples
.
size
()
<<
"
\r
"
;
computeChannels
(
samples
[
i
],
channels
);
feature_evaluator
->
setChannels
(
channels
);
feature_evaluator
->
evaluateAll
(
feature_col
);
for
(
int
j
=
0
;
j
<
feature_col
.
rows
;
++
j
)
data
(
i
,
j
)
=
feature_col
(
0
,
j
);
evaluator
->
setChannels
(
channels
);
//evaluator->assertChannels();
evaluator
->
evaluateAll
(
feature_col
);
CV_Assert
(
feature_col
.
cols
==
(
int
)
features
.
size
());
for
(
int
j
=
0
;
j
<
feature_col
.
cols
;
++
j
)
data
(
j
,
i
)
=
feature_col
(
0
,
j
);
}
cout
<<
"
\n
"
;
samples
.
clear
();
WaldBoostParams
wparams
;
wparams
.
weak_count
=
params
.
weak_count
;
wparams
.
alpha
=
0.001
f
;
wparams
.
alpha
=
0.02
f
;
waldboost_
=
createWaldBoost
(
wparams
);
vector
<
int
>
indices
=
waldboost_
->
train
(
data
,
labels
);
cout
<<
"indices: "
;
for
(
size_t
i
=
0
;
i
<
indices
.
size
();
++
i
)
cout
<<
indices
[
i
]
<<
" "
;
cout
<<
endl
;
features_
.
clear
();
for
(
size_t
i
=
0
;
i
<
indices
.
size
();
++
i
)
features_
.
push_back
(
features
[
indices
[
i
]]);
}
Ptr
<
WaldBoost
>
waldboost
=
createWaldBoost
(
wparams
);
waldboost
->
train
(
data
,
labels
);
void
ICFDetector
::
write
(
FileStorage
&
fs
)
const
{
fs
<<
"{"
;
fs
<<
"model_n_rows"
<<
model_n_rows_
;
fs
<<
"model_n_cols"
<<
model_n_cols_
;
fs
<<
"waldboost"
;
waldboost_
->
write
(
fs
);
fs
<<
"features"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
features_
.
size
();
++
i
)
{
fs
<<
features_
[
i
];
}
fs
<<
"]"
;
fs
<<
"}"
;
}
void
ICFDetector
::
read
(
const
FileNode
&
node
)
{
waldboost_
=
Ptr
<
WaldBoost
>
(
createWaldBoost
(
WaldBoostParams
()));
node
[
"model_n_rows"
]
>>
model_n_rows_
;
node
[
"model_n_cols"
]
>>
model_n_cols_
;
waldboost_
->
read
(
node
[
"waldboost"
]);
FileNode
features
=
node
[
"features"
];
features_
.
clear
();
vector
<
int
>
p
;
for
(
FileNodeIterator
n
=
features
.
begin
();
n
!=
features
.
end
();
++
n
)
{
(
*
n
)
>>
p
;
features_
.
push_back
(
p
);
}
}
void
ICFDetector
::
detect
(
const
Mat
&
img
,
vector
<
Rect
>&
objects
,
float
scaleFactor
,
Size
minSize
,
Size
maxSize
,
float
threshold
)
{
float
scale_from
=
min
(
model_n_cols_
/
(
float
)
maxSize
.
width
,
model_n_rows_
/
(
float
)
maxSize
.
height
);
float
scale_to
=
max
(
model_n_cols_
/
(
float
)
minSize
.
width
,
model_n_rows_
/
(
float
)
minSize
.
height
);
objects
.
clear
();
Ptr
<
FeatureEvaluator
>
evaluator
=
createFeatureEvaluator
(
features_
,
"icf"
);
Mat
rescaled_image
;
int
step
=
8
;
vector
<
Mat
>
channels
;
for
(
float
scale
=
scale_from
;
scale
<
scale_to
+
0.001
;
scale
*=
scaleFactor
)
{
cout
<<
"scale "
<<
scale
<<
endl
;
int
new_width
=
int
(
img
.
cols
*
scale
);
new_width
-=
new_width
%
4
;
int
new_height
=
int
(
img
.
rows
*
scale
);
new_height
-=
new_height
%
4
;
resize
(
img
,
rescaled_image
,
Size
(
new_width
,
new_height
));
computeChannels
(
rescaled_image
,
channels
);
evaluator
->
setChannels
(
channels
);
for
(
int
row
=
0
;
row
<=
rescaled_image
.
rows
-
model_n_rows_
;
row
+=
step
)
{
for
(
int
col
=
0
;
col
<=
rescaled_image
.
cols
-
model_n_cols_
;
col
+=
step
)
{
evaluator
->
setPosition
(
Size
(
row
,
col
));
float
value
=
waldboost_
->
predict
(
evaluator
);
if
(
value
>
threshold
)
{
int
x
=
(
int
)(
col
/
scale
);
int
y
=
(
int
)(
row
/
scale
);
int
width
=
(
int
)(
model_n_cols_
/
scale
);
int
height
=
(
int
)(
model_n_rows_
/
scale
);
cout
<<
value
<<
" "
<<
x
<<
" "
<<
y
<<
" "
<<
width
<<
" "
<<
height
<<
endl
;
objects
.
push_back
(
Rect
(
x
,
y
,
width
,
height
));
}
}
}
}
}
void
write
(
FileStorage
&
fs
,
String
&
,
const
ICFDetector
&
detector
)
{
detector
.
write
(
fs
);
}
bool
ICFDetector
::
save
(
const
string
&
)
void
read
(
const
FileNode
&
node
,
ICFDetector
&
d
,
const
ICFDetector
&
default_value
)
{
return
true
;
if
(
node
.
empty
()
)
d
=
default_value
;
else
d
.
read
(
node
);
}
}
/* namespace xobjdetect */
...
...
modules/xobjdetect/src/precomp.hpp
View file @
47f61f1c
...
...
@@ -45,6 +45,8 @@ the use of this software, even if advised of the possibility of such damage.
#include <opencv2/xobjdetect.hpp>
#include <opencv2/xobjdetect/private.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgproc/types_c.h>
...
...
modules/xobjdetect/src/stump.cpp
View file @
47f61f1c
...
...
@@ -65,131 +65,119 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
{
CV_Assert
(
labels
.
rows
==
1
&&
labels
.
cols
==
data
.
cols
);
CV_Assert
(
weights
.
rows
==
1
&&
weights
.
cols
==
data
.
cols
);
CV_Assert
(
data
.
cols
>
1
);
/* Assert that data and labels have int type */
/* Assert that weights have float type */
Mat_
<
int
>
d
=
Mat_
<
int
>::
zeros
(
1
,
data
.
cols
);
const
Mat_
<
int
>&
l
=
labels
;
const
Mat_
<
float
>&
w
=
weights
;
/* Prepare labels for each feature rearranged according to sorted order */
Mat
sorted_labels
(
data
.
rows
,
data
.
cols
,
labels
.
type
());
Mat
sorted_weights
(
data
.
rows
,
data
.
cols
,
weights
.
type
());
Mat
indices
;
sortIdx
(
data
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
for
(
int
row
=
0
;
row
<
indices
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
indices
.
cols
;
++
col
)
{
sorted_labels
.
at
<
int
>
(
row
,
col
)
=
labels
.
at
<
int
>
(
0
,
indices
.
at
<
int
>
(
row
,
col
));
sorted_weights
.
at
<
float
>
(
row
,
col
)
=
weights
.
at
<
float
>
(
0
,
indices
.
at
<
int
>
(
row
,
col
));
}
}
Mat_
<
int
>
indices
(
1
,
l
.
cols
);
Mat_
<
int
>
sorted_d
(
1
,
data
.
cols
);
Mat_
<
int
>
sorted_l
(
1
,
l
.
cols
);
Mat_
<
float
>
sorted_w
(
1
,
w
.
cols
);
/* Sort feature values */
Mat
sorted_data
(
data
.
rows
,
data
.
cols
,
data
.
type
());
sort
(
data
,
sorted_data
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
/* Split positive and negative weights */
Mat
pos_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat_
<
float
>
pos_c_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
Mat_
<
float
>
neg_c_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_thr
=
-
1
;
int
min_pol
=
-
1
;
float
min_pos
=
1
;
float
min_neg
=
-
1
;
float
eps
=
1.0
f
/
(
4
*
l
.
cols
);
/* For every feature */
for
(
int
row
=
0
;
row
<
data
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
data
.
cols
;
++
col
)
{
if
(
sorted_labels
.
at
<
int
>
(
row
,
col
)
==
+
1
)
{
pos_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
else
{
neg_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
}
}
d
(
0
,
col
)
=
data
.
at
<
int
>
(
row
,
col
);
/* Compute cumulative sums for fast stump error computation */
Mat
pos_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
cumsum
(
pos_weights
,
pos_cum_weights
);
cumsum
(
neg_weights
,
neg_cum_weights
);
sortIdx
(
d
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
/* Compute total weights of positive and negative samples */
float
pos_total_weight
=
pos_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
float
neg_total_weight
=
neg_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
for
(
int
col
=
0
;
col
<
indices
.
cols
;
++
col
)
{
int
ind
=
indices
(
0
,
col
);
sorted_d
(
0
,
col
)
=
d
(
0
,
ind
);
sorted_l
(
0
,
col
)
=
l
(
0
,
ind
);
sorted_w
(
0
,
col
)
=
w
(
0
,
ind
);
}
Mat_
<
float
>
pos_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
Mat_
<
float
>
neg_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
for
(
int
col
=
0
;
col
<
d
.
cols
;
++
col
)
{
float
weight
=
sorted_w
(
0
,
col
);
if
(
sorted_l
(
0
,
col
)
==
+
1
)
pos_w
(
0
,
col
)
=
weight
;
else
neg_w
(
0
,
col
)
=
weight
;
}
float
eps
=
1.0
f
/
(
4
*
labels
.
cols
);
cumsum
(
pos_w
,
pos_c_w
);
cumsum
(
neg_w
,
neg_c_w
);
/* Compute minimal error */
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_col
=
-
1
;
int
min_polarity
=
0
;
float
min_pos_value
=
1
,
min_neg_value
=
-
1
;
float
pos_total_w
=
pos_c_w
(
0
,
w
.
cols
-
1
);
float
neg_total_w
=
neg_c_w
(
0
,
w
.
cols
-
1
);
for
(
int
row
=
0
;
row
<
sorted_weights
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
sorted_weights
.
cols
-
1
;
++
col
)
for
(
int
col
=
0
;
col
<
w
.
cols
-
1
;
++
col
)
{
float
err
,
h_pos
,
h_neg
;
float
pos_wrong
,
pos_right
;
float
neg_wrong
,
neg_right
;
// Direct polarity
float
pos_wrong
=
pos_cum_weights
.
at
<
float
>
(
row
,
col
);
float
pos_right
=
pos_total_weight
-
pos_wrong
;
/* Direct polarity */
float
neg_right
=
neg_cum_weights
.
at
<
float
>
(
row
,
col
);
float
neg_wrong
=
neg_total_weight
-
neg_right
;
pos_wrong
=
pos_c_w
(
0
,
col
);
pos_right
=
pos_total_w
-
pos_wrong
;
h_pos
=
(
float
)(
.5
*
log
((
pos_right
+
eps
)
/
(
pos_wrong
+
eps
))
);
h_neg
=
(
float
)(
.5
*
log
((
neg_wrong
+
eps
)
/
(
neg_right
+
eps
)))
;
neg_right
=
neg_c_w
(
0
,
col
);
neg_wrong
=
neg_total_w
-
neg_right
;
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
h_pos
=
.5
f
*
log
((
pos_right
+
eps
)
/
(
pos_wrong
+
eps
));
h_neg
=
.5
f
*
log
((
neg_wrong
+
eps
)
/
(
neg_right
+
eps
));
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_
col
=
col
;
min_pol
arity
=
+
1
;
min_pos
_value
=
h_pos
;
min_neg
_value
=
h_neg
;
min_
thr
=
(
sorted_d
(
0
,
col
)
+
sorted_d
(
0
,
col
+
1
))
/
2
;
min_pol
=
+
1
;
min_pos
=
h_pos
;
min_neg
=
h_neg
;
}
// Opposite polarity
/* Opposite polarity */
swap
(
pos_right
,
pos_wrong
);
swap
(
neg_right
,
neg_wrong
);
h_pos
=
-
h_pos
;
h_neg
=
-
h_neg
;
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_
col
=
col
;
min_pol
arity
=
-
1
;
min_pos
_value
=
h_pos
;
min_neg
_value
=
h_neg
;
min_
thr
=
(
sorted_d
(
0
,
col
)
+
sorted_d
(
0
,
col
+
1
))
/
2
;
min_pol
=
-
1
;
min_pos
=
-
h_pos
;
min_neg
=
-
h_neg
;
}
}
}
/* Compute threshold, store found values in fields */
threshold_
=
(
sorted_data
.
at
<
int
>
(
min_row
,
min_col
)
+
sorted_data
.
at
<
int
>
(
min_row
,
min_col
+
1
)
)
/
2
;
polarity_
=
min_polarity
;
pos_value_
=
min_pos_value
;
neg_value_
=
min_neg_value
;
threshold_
=
min_thr
;
polarity_
=
min_pol
;
pos_value_
=
min_pos
;
neg_value_
=
min_neg
;
return
min_row
;
}
...
...
@@ -199,5 +187,19 @@ float Stump::predict(int value) const
return
polarity_
*
(
value
-
threshold_
)
>
0
?
pos_value_
:
neg_value_
;
}
void
read
(
const
FileNode
&
node
,
Stump
&
s
,
const
Stump
&
default_value
)
{
if
(
node
.
empty
()
)
s
=
default_value
;
else
s
.
read
(
node
);
}
void
write
(
FileStorage
&
fs
,
String
&
,
const
Stump
&
s
)
{
s
.
write
(
fs
);
}
}
/* namespace xobjdetect */
}
/* namespace cv */
modules/xobjdetect/src/waldboost.cpp
View file @
47f61f1c
...
...
@@ -45,6 +45,11 @@ using std::swap;
using
std
::
vector
;
#include <iostream>
using
std
::
cout
;
using
std
::
endl
;
namespace
cv
{
namespace
xobjdetect
...
...
@@ -62,7 +67,11 @@ public:
const
Mat
&
labels
);
virtual
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
)
const
;
const
Ptr
<
FeatureEvaluator
>&
feature_evaluator
)
const
;
virtual
void
write
(
FileStorage
&
fs
)
const
;
virtual
void
read
(
const
FileNode
&
node
);
private
:
/* Parameters for cascade training */
...
...
@@ -73,18 +82,82 @@ private:
std
::
vector
<
float
>
thresholds_
;
};
vector
<
int
>
WaldBoostImpl
::
train
(
const
Mat
&
data
,
const
Mat
&
labels
)
static
int
count
(
const
Mat_
<
int
>
&
m
,
int
elem
)
{
CV_Assert
(
labels
.
rows
==
1
&&
labels
.
cols
==
data
.
cols
);
int
res
=
0
;
for
(
int
row
=
0
;
row
<
m
.
rows
;
++
row
)
for
(
int
col
=
0
;
col
<
m
.
cols
;
++
col
)
if
(
m
(
row
,
col
)
==
elem
)
res
+=
1
;
return
res
;
}
int
pos_count
=
0
,
neg_count
=
0
;
for
(
int
col
=
0
;
col
<
labels
.
cols
;
++
col
)
void
WaldBoostImpl
::
read
(
const
FileNode
&
node
)
{
FileNode
params
=
node
[
"waldboost_params"
];
params_
.
weak_count
=
(
int
)(
params
[
"weak_count"
]);
params_
.
alpha
=
(
float
)(
params
[
"alpha"
]);
FileNode
stumps
=
node
[
"waldboost_stumps"
];
stumps_
.
clear
();
for
(
FileNodeIterator
n
=
stumps
.
begin
();
n
!=
stumps
.
end
();
++
n
)
{
if
(
labels
.
at
<
int
>
(
0
,
col
)
==
+
1
)
pos_count
+=
1
;
else
neg_count
+=
1
;
Stump
s
;
*
n
>>
s
;
stumps_
.
push_back
(
s
);
}
FileNode
thresholds
=
node
[
"waldboost_thresholds"
];
thresholds_
.
clear
();
for
(
FileNodeIterator
n
=
thresholds
.
begin
();
n
!=
thresholds
.
end
();
++
n
)
{
float
t
;
*
n
>>
t
;
thresholds_
.
push_back
(
t
);
}
}
void
WaldBoostImpl
::
write
(
FileStorage
&
fs
)
const
{
fs
<<
"{"
;
fs
<<
"waldboost_params"
<<
"{"
<<
"weak_count"
<<
params_
.
weak_count
<<
"alpha"
<<
params_
.
alpha
<<
"}"
;
fs
<<
"waldboost_stumps"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
stumps_
.
size
();
++
i
)
fs
<<
stumps_
[
i
];
fs
<<
"]"
;
fs
<<
"waldboost_thresholds"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
thresholds_
.
size
();
++
i
)
fs
<<
thresholds_
[
i
];
fs
<<
"]"
;
fs
<<
"}"
;
}
vector
<
int
>
WaldBoostImpl
::
train
(
const
Mat
&
data_
,
const
Mat
&
labels_
)
{
CV_Assert
(
labels_
.
rows
==
1
&&
labels_
.
cols
==
data_
.
cols
);
CV_Assert
(
data_
.
rows
>=
params_
.
weak_count
);
Mat
labels
,
data
;
data_
.
copyTo
(
data
);
labels_
.
copyTo
(
labels
);
bool
null_data
=
true
;
for
(
int
row
=
0
;
row
<
data
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
data
.
cols
;
++
col
)
if
(
data
.
at
<
int
>
(
row
,
col
)
)
null_data
=
false
;
}
CV_Assert
(
!
null_data
);
int
pos_count
=
count
(
labels
,
+
1
);
int
neg_count
=
count
(
labels
,
-
1
);
Mat_
<
float
>
weights
(
labels
.
rows
,
labels
.
cols
);
float
pos_weight
=
1.0
f
/
(
2
*
pos_count
);
...
...
@@ -97,6 +170,9 @@ vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
weights
.
at
<
float
>
(
0
,
col
)
=
neg_weight
;
}
vector
<
int
>
feature_indices_pool
;
for
(
int
ind
=
0
;
ind
<
data
.
rows
;
++
ind
)
feature_indices_pool
.
push_back
(
ind
);
vector
<
int
>
feature_indices
;
Mat_
<
float
>
trace
=
Mat_
<
float
>::
zeros
(
labels
.
rows
,
labels
.
cols
);
...
...
@@ -104,10 +180,14 @@ vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
thresholds_
.
clear
();
for
(
int
i
=
0
;
i
<
params_
.
weak_count
;
++
i
)
{
cout
<<
"stage "
<<
i
<<
endl
;
Stump
s
;
int
feature_ind
=
s
.
train
(
data
,
labels
,
weights
);
cout
<<
"feature_ind "
<<
feature_ind
<<
endl
;
stumps_
.
push_back
(
s
);
feature_indices
.
push_back
(
feature_ind
);
int
ind
=
feature_indices_pool
[
feature_ind
];
feature_indices_pool
.
erase
(
feature_indices_pool
.
begin
()
+
feature_ind
);
feature_indices
.
push_back
(
ind
);
// Recompute weights
for
(
int
col
=
0
;
col
<
weights
.
cols
;
++
col
)
...
...
@@ -118,6 +198,14 @@ vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
weights
.
at
<
float
>
(
0
,
col
)
*=
exp
(
-
label
*
h
);
}
// Erase row for feature in data
Mat
fixed_data
;
fixed_data
.
push_back
(
data
.
rowRange
(
0
,
feature_ind
));
fixed_data
.
push_back
(
data
.
rowRange
(
feature_ind
+
1
,
data
.
rows
));
data
=
fixed_data
;
// Normalize weights
float
z
=
(
float
)
sum
(
weights
)[
0
];
for
(
int
col
=
0
;
col
<
weights
.
cols
;
++
col
)
...
...
@@ -125,12 +213,12 @@ vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
weights
.
at
<
float
>
(
0
,
col
)
/=
z
;
}
// Sort trace
Mat
indices
;
sortIdx
(
trace
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
Mat
new_weights
=
Mat_
<
float
>::
zeros
(
weights
.
rows
,
weights
.
cols
);
Mat
new_labels
=
Mat_
<
int
>::
zeros
(
labels
.
rows
,
labels
.
cols
);
Mat
new_data
=
Mat_
<
int
>::
zeros
(
data
.
rows
,
data
.
cols
);
Mat
new_trace
;
for
(
int
col
=
0
;
col
<
new_weights
.
cols
;
++
col
)
{
...
...
@@ -138,34 +226,69 @@ vector<int> WaldBoostImpl::train(const Mat& data, const Mat& labels)
weights
.
at
<
float
>
(
0
,
indices
.
at
<
int
>
(
0
,
col
));
new_labels
.
at
<
int
>
(
0
,
col
)
=
labels
.
at
<
int
>
(
0
,
indices
.
at
<
int
>
(
0
,
col
));
for
(
int
row
=
0
;
row
<
new_data
.
rows
;
++
row
)
{
new_data
.
at
<
int
>
(
row
,
col
)
=
data
.
at
<
int
>
(
row
,
indices
.
at
<
int
>
(
0
,
col
));
}
}
sort
(
trace
,
new_trace
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
// Compute threshold for trace
/*
int col = 0;
for( int pos_i = 0;
pos_i
<
pos_count
*
params_
.
alpha
&&
col
<
weight
s
.
cols
;
pos_i < pos_count * params_.alpha && col <
new_label
s.cols;
++col )
{
if
(
labels
.
at
<
int
>
(
0
,
col
)
==
+
1
)
if(
new_
labels.at<int>(0, col) == +1 )
++pos_i;
}
*/
int
cur_pos
=
0
,
cur_neg
=
0
;
int
max_col
=
0
;
for
(
int
col
=
0
;
col
<
new_labels
.
cols
-
1
;
++
col
)
{
if
(
new_labels
.
at
<
int
>
(
0
,
col
)
==
+
1
)
++
cur_pos
;
else
++
cur_neg
;
float
p_neg
=
cur_neg
/
(
float
)
neg_count
;
float
p_pos
=
cur_pos
/
(
float
)
pos_count
;
if
(
params_
.
alpha
*
p_neg
>
p_pos
)
max_col
=
col
;
}
thresholds_
.
push_back
(
new_trace
.
at
<
float
>
(
0
,
col
));
thresholds_
.
push_back
(
new_trace
.
at
<
float
>
(
0
,
max_col
));
cout
<<
"threshold "
<<
*
(
thresholds_
.
end
()
-
1
)
<<
endl
;
cout
<<
"col "
<<
max_col
<<
" size "
<<
data
.
cols
<<
endl
;
// Drop samples below threshold
new_trace
.
colRange
(
col
,
new_trace
.
cols
).
copyTo
(
trace
);
new_weights
.
colRange
(
col
,
new_weights
.
cols
).
copyTo
(
weights
);
new_labels
.
colRange
(
col
,
new_labels
.
cols
).
copyTo
(
labels
);
new_data
.
colRange
(
max_col
,
new_data
.
cols
).
copyTo
(
data
);
new_trace
.
colRange
(
max_col
,
new_trace
.
cols
).
copyTo
(
trace
);
new_weights
.
colRange
(
max_col
,
new_weights
.
cols
).
copyTo
(
weights
);
new_labels
.
colRange
(
max_col
,
new_labels
.
cols
).
copyTo
(
labels
);
pos_count
=
count
(
labels
,
+
1
);
neg_count
=
count
(
labels
,
-
1
);
cout
<<
"pos_count "
<<
pos_count
<<
"; neg_count "
<<
neg_count
<<
endl
;
if
(
data
.
cols
<
2
||
neg_count
==
0
)
{
break
;
}
}
return
feature_indices
;
}
float
WaldBoostImpl
::
predict
(
const
Ptr
<
ACF
FeatureEvaluator
>&
feature_evaluator
)
const
const
Ptr
<
FeatureEvaluator
>&
feature_evaluator
)
const
{
float
trace
=
0
;
CV_Assert
(
stumps_
.
size
()
==
thresholds_
.
size
());
for
(
size_t
i
=
0
;
i
<
stumps_
.
size
();
++
i
)
{
int
value
=
feature_evaluator
->
evaluate
(
i
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment