Commit 47771c18 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #1390 from sovrasov:saliency_update

parents 9b275d58 e1cd60c9
...@@ -67,11 +67,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm ...@@ -67,11 +67,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm
*/ */
virtual ~Saliency(); virtual ~Saliency();
/**
* \brief Create Saliency by saliency type.
*/
static Ptr<Saliency> create( const String& saliencyType );
/** /**
* \brief Compute the saliency * \brief Compute the saliency
* \param image The image. * \param image The image.
...@@ -80,12 +75,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm ...@@ -80,12 +75,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm
*/ */
CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap ); CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap );
/**
* \brief Get the name of the specific saliency type
* \return The name of the tracker initializer
*/
CV_WRAP String getClassName() const;
protected: protected:
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0; virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;
......
...@@ -234,15 +234,28 @@ private: ...@@ -234,15 +234,28 @@ private:
bool templateOrdering(); bool templateOrdering();
bool templateReplacement( const Mat& finalBFMask, const Mat& image ); bool templateReplacement( const Mat& finalBFMask, const Mat& image );
// Decision threshold adaptation and Activity control function
bool activityControl(const Mat& current_noisePixelsMask);
bool decisionThresholdAdaptation();
// changing structure // changing structure
std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper. std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value) // Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel // for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value) Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value. // and in the secon level there are the Ca value, the counter for each potential value.
Mat epslonPixelsValue; // epslon threshold Mat epslonPixelsValue;// epslon threshold
Mat activityPixelsValue;// Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
Mat noisePixelMask;// We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
//detection process,however, after the low resolution detection, it has become a
// background pixel. The matrix is two-channel matrix. In the first layer there is the mask ( the identified noise-pixels are set to 1 while other pixels are 0)
// for each pixel. In the second layer, there is the value of activity level A for each pixel.
//fixed parameter //fixed parameter
bool activityControlFlag;
bool neighborhoodCheck; bool neighborhoodCheck;
int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
CV_PROP_RW int imageWidth;// Width of input image CV_PROP_RW int imageWidth;// Width of input image
...@@ -257,6 +270,13 @@ private: ...@@ -257,6 +270,13 @@ private:
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will // long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts. //restrain the generation of ghosts.
uchar Ainc;// Activity Incrementation;
int Bmax;// Upper-bound value for pixel activity
int Bth;// Max activity threshold
int Binc, Bdec;// Threshold for pixel-level decision threshold (epslon) adaptation
float deltaINC, deltaDEC;// Increment-decrement value for epslon adaptation
int epslonMIN, epslonMAX;// Range values for epslon threshold
}; };
/************************************ Specific Objectness Specialized Classes ************************************/ /************************************ Specific Objectness Specialized Classes ************************************/
...@@ -417,7 +437,7 @@ private: ...@@ -417,7 +437,7 @@ private:
int _Clr;// int _Clr;//
static const char* _clrName[3]; static const char* _clrName[3];
// Names and paths to read model and to store results // Names and paths to read model and to store results
std::string _modelName, _bbResDir, _trainingPath, _resultsDir; std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
...@@ -425,12 +445,12 @@ private: ...@@ -425,12 +445,12 @@ private:
FilterTIG _tigF;// TIG filter FilterTIG _tigF;// TIG filter
Mat _svmReW1f;// Re-weight parameters learned at stage II. Mat _svmReW1f;// Re-weight parameters learned at stage II.
// List of the rectangles' objectness value, in the same order as // List of the rectangles' objectness value, in the same order as
// the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function) // the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
std::vector<float> objectnessValues; std::vector<float> objectnessValues;
private: private:
// functions // functions
inline static float LoG( float x, float y, float delta ) inline static float LoG( float x, float y, float delta )
{ {
...@@ -438,17 +458,17 @@ private: ...@@ -438,17 +458,17 @@ private:
return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d ); return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
} // Laplacian of Gaussian } // Laplacian of Gaussian
// Read matrix from binary file // Read matrix from binary file
static bool matRead( const std::string& filename, Mat& M ); static bool matRead( const std::string& filename, Mat& M );
void setColorSpace( int clr = MAXBGR ); void setColorSpace( int clr = MAXBGR );
// Load trained model. // Load trained model.
int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded
// Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY). // Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
// The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII(). // The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
// Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio) // Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 ); void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize ); void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
...@@ -460,7 +480,7 @@ private: ...@@ -460,7 +480,7 @@ private:
void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true ); void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz ); void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
// Calculate the image gradient: center option as in VLFeat // Calculate the image gradient: center option as in VLFeat
void gradientMag( Mat &imgBGR3u, Mat &mag1u ); void gradientMag( Mat &imgBGR3u, Mat &mag1u );
static void gradientRGB( Mat &bgr3u, Mat &mag1u ); static void gradientRGB( Mat &bgr3u, Mat &mag1u );
...@@ -479,7 +499,7 @@ private: ...@@ -479,7 +499,7 @@ private:
return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] ); return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
} }
//Non-maximal suppress //Non-maximal suppress
static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true ); static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
}; };
......
...@@ -64,6 +64,7 @@ static void help() ...@@ -64,6 +64,7 @@ static void help()
int main( int argc, char** argv ) int main( int argc, char** argv )
{ {
CommandLineParser parser( argc, argv, keys ); CommandLineParser parser( argc, argv, keys );
String saliency_algorithm = parser.get<String>( 0 ); String saliency_algorithm = parser.get<String>( 0 );
...@@ -94,13 +95,7 @@ int main( int argc, char** argv ) ...@@ -94,13 +95,7 @@ int main( int argc, char** argv )
Mat frame; Mat frame;
//instantiates the specific Saliency //instantiates the specific Saliency
Ptr<Saliency> saliencyAlgorithm = Saliency::create( saliency_algorithm ); Ptr<Saliency> saliencyAlgorithm;
if( saliencyAlgorithm == NULL )
{
cout << "***Error in the instantiation of the saliency algorithm...***\n";
return -1;
}
Mat binaryMap; Mat binaryMap;
Mat image; Mat image;
...@@ -116,6 +111,7 @@ int main( int argc, char** argv ) ...@@ -116,6 +111,7 @@ int main( int argc, char** argv )
if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 ) if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 )
{ {
Mat saliencyMap; Mat saliencyMap;
saliencyAlgorithm = StaticSaliencySpectralResidual::create();
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{ {
StaticSaliencySpectralResidual spec; StaticSaliencySpectralResidual spec;
...@@ -131,6 +127,7 @@ int main( int argc, char** argv ) ...@@ -131,6 +127,7 @@ int main( int argc, char** argv )
else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 ) else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 )
{ {
Mat saliencyMap; Mat saliencyMap;
saliencyAlgorithm = StaticSaliencyFineGrained::create();
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) ) if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{ {
imshow( "Saliency Map", saliencyMap ); imshow( "Saliency Map", saliencyMap );
...@@ -150,6 +147,7 @@ int main( int argc, char** argv ) ...@@ -150,6 +147,7 @@ int main( int argc, char** argv )
else else
{ {
saliencyAlgorithm = ObjectnessBING::create();
vector<Vec4i> saliencyMap; vector<Vec4i> saliencyMap;
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path ); saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path );
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( training_path + "/Results" ); saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( training_path + "/Results" );
...@@ -163,8 +161,7 @@ int main( int argc, char** argv ) ...@@ -163,8 +161,7 @@ int main( int argc, char** argv )
} }
else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 ) else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 )
{ {
saliencyAlgorithm = MotionSaliencyBinWangApr2014::create();
//Ptr<Size> size = Ptr<Size>( new Size( image.cols, image.rows ) );
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows ); saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows );
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init(); saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init();
...@@ -175,13 +172,14 @@ int main( int argc, char** argv ) ...@@ -175,13 +172,14 @@ int main( int argc, char** argv )
{ {
cap >> frame; cap >> frame;
if( frame.empty() )
{
return 0;
}
cvtColor( frame, frame, COLOR_BGR2GRAY ); cvtColor( frame, frame, COLOR_BGR2GRAY );
Mat saliencyMap; Mat saliencyMap;
if( saliencyAlgorithm->computeSaliency( frame, saliencyMap ) ) saliencyAlgorithm->computeSaliency( frame, saliencyMap );
{
std::cout << "current frame motion saliency done" << std::endl;
}
imshow( "image", frame ); imshow( "image", frame );
imshow( "saliencyMap", saliencyMap * 255 ); imshow( "saliencyMap", saliencyMap * 255 );
......
...@@ -51,19 +51,6 @@ Saliency::~Saliency() ...@@ -51,19 +51,6 @@ Saliency::~Saliency()
} }
Ptr<Saliency> Saliency::create( const String& saliencyType )
{
if (saliencyType == "SPECTRAL_RESIDUAL")
return makePtr<StaticSaliencySpectralResidual>();
else if (saliencyType == "FINE_GRAINED")
return makePtr<StaticSaliencyFineGrained>();
else if (saliencyType == "BING")
return makePtr<ObjectnessBING>();
else if (saliencyType == "BinWangApr2014")
return makePtr<MotionSaliencyBinWangApr2014>();
return Ptr<Saliency>();
}
bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap ) bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap )
{ {
if( image.empty() ) if( image.empty() )
...@@ -72,10 +59,5 @@ bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap ) ...@@ -72,10 +59,5 @@ bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap )
return computeSaliencyImpl( image, saliencyMap ); return computeSaliencyImpl( image, saliencyMap );
} }
String Saliency::getClassName() const
{
return className;
}
} /* namespace saliency */ } /* namespace saliency */
} /* namespace cv */ } /* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment