Commit 47771c18 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #1390 from sovrasov:saliency_update

parents 9b275d58 e1cd60c9
......@@ -67,11 +67,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm
*/
virtual ~Saliency();
/**
* \brief Create Saliency by saliency type.
*/
static Ptr<Saliency> create( const String& saliencyType );
/**
* \brief Compute the saliency
* \param image The image.
......@@ -80,12 +75,6 @@ class CV_EXPORTS_W Saliency : public virtual Algorithm
*/
CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap );
/**
* \brief Get the name of the specific saliency type
* \return The name of the tracker initializer
*/
CV_WRAP String getClassName() const;
protected:
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;
......
......@@ -234,15 +234,28 @@ private:
bool templateOrdering();
bool templateReplacement( const Mat& finalBFMask, const Mat& image );
// Decision threshold adaptation and Activity control function
bool activityControl(const Mat& current_noisePixelsMask);
bool decisionThresholdAdaptation();
// changing structure
std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
// Matrices are two-channel matrix. In the first layer there are the B (background value)
// for each pixel. In the second layer, there are the C (efficacy) value for each pixel
Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
// and in the secon level there are the Ca value, the counter for each potential value.
Mat epslonPixelsValue; // epslon threshold
Mat epslonPixelsValue;// epslon threshold
Mat activityPixelsValue;// Activity level of each pixel
//vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
Mat noisePixelMask;// We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
//detection process,however, after the low resolution detection, it has become a
// background pixel. The matrix is two-channel matrix. In the first layer there is the mask ( the identified noise-pixels are set to 1 while other pixels are 0)
// for each pixel. In the second layer, there is the value of activity level A for each pixel.
//fixed parameter
bool activityControlFlag;
bool neighborhoodCheck;
int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
CV_PROP_RW int imageWidth;// Width of input image
......@@ -257,6 +270,13 @@ private:
// long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
//restrain the generation of ghosts.
uchar Ainc;// Activity Incrementation;
int Bmax;// Upper-bound value for pixel activity
int Bth;// Max activity threshold
int Binc, Bdec;// Threshold for pixel-level decision threshold (epslon) adaptation
float deltaINC, deltaDEC;// Increment-decrement value for epslon adaptation
int epslonMIN, epslonMAX;// Range values for epslon threshold
};
/************************************ Specific Objectness Specialized Classes ************************************/
......@@ -417,7 +437,7 @@ private:
int _Clr;//
static const char* _clrName[3];
// Names and paths to read model and to store results
// Names and paths to read model and to store results
std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
......@@ -425,12 +445,12 @@ private:
FilterTIG _tigF;// TIG filter
Mat _svmReW1f;// Re-weight parameters learned at stage II.
// List of the rectangles' objectness value, in the same order as
// the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
// List of the rectangles' objectness value, in the same order as
// the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
std::vector<float> objectnessValues;
private:
// functions
// functions
inline static float LoG( float x, float y, float delta )
{
......@@ -438,17 +458,17 @@ private:
return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
} // Laplacian of Gaussian
// Read matrix from binary file
// Read matrix from binary file
static bool matRead( const std::string& filename, Mat& M );
void setColorSpace( int clr = MAXBGR );
// Load trained model.
// Load trained model.
int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded
// Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
// The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
// Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
// Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
// The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
// Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
......@@ -460,7 +480,7 @@ private:
void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
// Calculate the image gradient: center option as in VLFeat
// Calculate the image gradient: center option as in VLFeat
void gradientMag( Mat &imgBGR3u, Mat &mag1u );
static void gradientRGB( Mat &bgr3u, Mat &mag1u );
......@@ -479,7 +499,7 @@ private:
return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
}
//Non-maximal suppress
//Non-maximal suppress
static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
};
......
......@@ -64,6 +64,7 @@ static void help()
int main( int argc, char** argv )
{
CommandLineParser parser( argc, argv, keys );
String saliency_algorithm = parser.get<String>( 0 );
......@@ -94,13 +95,7 @@ int main( int argc, char** argv )
Mat frame;
//instantiates the specific Saliency
Ptr<Saliency> saliencyAlgorithm = Saliency::create( saliency_algorithm );
if( saliencyAlgorithm == NULL )
{
cout << "***Error in the instantiation of the saliency algorithm...***\n";
return -1;
}
Ptr<Saliency> saliencyAlgorithm;
Mat binaryMap;
Mat image;
......@@ -116,6 +111,7 @@ int main( int argc, char** argv )
if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 )
{
Mat saliencyMap;
saliencyAlgorithm = StaticSaliencySpectralResidual::create();
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{
StaticSaliencySpectralResidual spec;
......@@ -131,6 +127,7 @@ int main( int argc, char** argv )
else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 )
{
Mat saliencyMap;
saliencyAlgorithm = StaticSaliencyFineGrained::create();
if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
{
imshow( "Saliency Map", saliencyMap );
......@@ -150,6 +147,7 @@ int main( int argc, char** argv )
else
{
saliencyAlgorithm = ObjectnessBING::create();
vector<Vec4i> saliencyMap;
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path );
saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( training_path + "/Results" );
......@@ -163,8 +161,7 @@ int main( int argc, char** argv )
}
else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 )
{
//Ptr<Size> size = Ptr<Size>( new Size( image.cols, image.rows ) );
saliencyAlgorithm = MotionSaliencyBinWangApr2014::create();
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows );
saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init();
......@@ -175,13 +172,14 @@ int main( int argc, char** argv )
{
cap >> frame;
if( frame.empty() )
{
return 0;
}
cvtColor( frame, frame, COLOR_BGR2GRAY );
Mat saliencyMap;
if( saliencyAlgorithm->computeSaliency( frame, saliencyMap ) )
{
std::cout << "current frame motion saliency done" << std::endl;
}
saliencyAlgorithm->computeSaliency( frame, saliencyMap );
imshow( "image", frame );
imshow( "saliencyMap", saliencyMap * 255 );
......
......@@ -41,11 +41,10 @@
#include <limits>
#include "precomp.hpp"
//TODO delete highgui include
//#include <opencv2/highgui.hpp>
#define thetaA_VAL 200
#define thetaL_VAL 250
#define epslonGeneric 20
namespace cv
{
......@@ -71,19 +70,25 @@ MotionSaliencyBinWangApr2014::MotionSaliencyBinWangApr2014()
gamma = 3;
neighborhoodCheck = true;
Ainc = 6; // Activity Incrementation;
Bmax = 80; // Upper-bound value for pixel activity
Bth = 20; //70; // Max activity threshold
Binc = 15; //50;
Bdec = 5; //20; // Threshold for pixel-level decision threshold (epslon) adaptation
deltaINC = 20;
deltaDEC = 0.125; // Increment-decrement value for epslon adaptation
epslonMIN = 18;
epslonMAX = 80;
className = "BinWangApr2014";
}
bool MotionSaliencyBinWangApr2014::init()
{
activityControlFlag = false;
Size imgSize( imageWidth, imageHeight );
epslonPixelsValue = Mat( imgSize.height, imgSize.width, CV_32F, Scalar( 20 ) );
// Median of range [18, 80] advised in reference paper.
// Since data is even, the median is estimated using two values ​​that occupy
// the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean).
potentialBackground = Mat( imgSize.height, imgSize.width, CV_32FC2, Scalar( std::numeric_limits<float>::quiet_NaN(), 0 ) );
epslonPixelsValue = Mat( imgSize.height, imgSize.width, CV_32F, Scalar( epslonGeneric ) );
potentialBackground = Mat( imgSize.height, imgSize.width, CV_8UC2, Scalar( 0, 0 ) );
backgroundModel.resize( K + 1 );
for ( int i = 0; i < K + 1; i++ )
......@@ -95,6 +100,11 @@ bool MotionSaliencyBinWangApr2014::init()
backgroundModel[i] = tmp;
}
noisePixelMask.create( imgSize.height, imgSize.width, CV_8U );
noisePixelMask.setTo( Scalar( 0 ) );
activityPixelsValue.create( imgSize.height, imgSize.width, CV_8U );
activityPixelsValue.setTo( Scalar( 0 ) );
return true;
}
......@@ -109,17 +119,17 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
{
Mat image = image2.clone();
float currentPixelValue;
uchar currentPixelValue;
float currentEpslonValue;
bool backgFlag = false;
// Initially, all pixels are considered as foreground and then we evaluate with the background model
highResBFMask.create( image.rows, image.cols, CV_32F );
highResBFMask.create( image.rows, image.cols, CV_8U );
highResBFMask.setTo( 1 );
uchar* pImage;
float* pEpslon;
float* pMask;
uchar* pMask;
// Scan all pixels of image
for ( int i = 0; i < image.rows; i++ )
......@@ -127,10 +137,14 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
pImage = image.ptr<uchar>( i );
pEpslon = epslonPixelsValue.ptr<float>( i );
pMask = highResBFMask.ptr<float>( i );
pMask = highResBFMask.ptr<uchar>( i );
for ( int j = 0; j < image.cols; j++ )
{
/* Pixels with activity greater than Bth are eliminated from the detection result. In this way,
continuously blinking noise-pixels will be eliminated from the detection results,
preventing the generation of false positives.*/
if( activityPixelsValue.at<uchar>( i, j ) < Bth )
{
backgFlag = false;
currentPixelValue = pImage[j];
currentEpslonValue = pEpslon[j];
......@@ -140,6 +154,8 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
{
counter += (int) backgroundModel[z]->ptr<Vec2f>( i )[j][1];
if( counter != 0 )
break;
}
if( counter != 0 ) //if at least the first template is activated / initialized
......@@ -183,6 +199,11 @@ bool MotionSaliencyBinWangApr2014::fullResolutionDetection( const Mat& image2, M
{
pMask[j] = 1; //if the model of the current pixel is not yet initialized, we mark the pixels as foreground
}
}
else
{
pMask[j] = 0;
}
}
} // end "for" cicle of all image's pixels
......@@ -211,11 +232,11 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
Mat currentModel;
// Initially, all pixels are considered as foreground and then we evaluate with the background model
lowResBFMask.create( image.rows, image.cols, CV_32F );
lowResBFMask.create( image.rows, image.cols, CV_8U );
lowResBFMask.setTo( 1 );
// Scan all the ROI of original matrices
for ( int i = 0; i < ceil( (float) image.rows / N ); i++ )
for ( int i = 0; i < (int)ceil( (float) image.rows / N ); i++ )
{
if( ( roi.y + ( N - 1 ) ) <= ( image.rows - 1 ) )
{
......@@ -223,8 +244,14 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
roi = Rect( Point( roi.x, roi.y ), Size( N, N ) );
}
for ( int j = 0; j < ceil( (float) image.cols / N ); j++ )
for ( int j = 0; j < (int)ceil( (float) image.cols / N ); j++ )
{
/* Pixels with activity greater than Bth are eliminated from the detection result. In this way,
continuously blinking noise-pixels will be eliminated from the detection results,
preventing the generation of false positives.*/
if( activityPixelsValue.at<uchar>( i, j ) < Bth )
{
// Compute the mean of image's block and epslonMatrix's block based on ROI
Mat roiImage = image( roi );
Mat roiEpslon = epslonPixelsValue( roi );
......@@ -262,6 +289,12 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
roi = Rect( Point( roi.x, roi.y ), Size( abs( ( image.cols - 1 ) - roi.x ) + 1, abs( ( image.rows - 1 ) - roi.y ) + 1 ) );
}
}
else
{
// The correspondence pixel in the BF mask is set as background ( 0 value)
rectangle( lowResBFMask, roi, Scalar( 0 ), FILLED );
}
}
//Shift the ROI from up to down follow the block dimension, also bringing it back to beginning of row
roi.x = 0;
roi.y += N;
......@@ -275,7 +308,7 @@ bool MotionSaliencyBinWangApr2014::lowResolutionDetection( const Mat& image, Mat
}
else
{
lowResBFMask.create( image.rows, image.cols, CV_32F );
lowResBFMask.create( image.rows, image.cols, CV_8U );
lowResBFMask.setTo( 1 );
return false;
}
......@@ -289,58 +322,70 @@ bool inline pairCompare( std::pair<float, float> t, std::pair<float, float> t_pl
}
// Background model maintenance functions
bool MotionSaliencyBinWangApr2014::templateOrdering()
{
std::vector<std::pair<float, float> > pixelTemplates( backgroundModel.size() );
Vec2f* bgModel_0P;
Vec2f* bgModel_1P;
Mat dstMask, tempMat, dstMask2, dstMask3;
Mat convertMat1, convertMat2;
int backGroundModelSize = (int)backgroundModel.size();
// Scan all pixels of image
for ( int i = 0; i < backgroundModel[0]->rows; i++ )
std::vector<std::vector<Mat> > channelSplit( backGroundModelSize );
for ( int i = 0; i < backGroundModelSize; i++ )
{
bgModel_0P = backgroundModel[0]->ptr<Vec2f>( i );
bgModel_1P = backgroundModel[1]->ptr<Vec2f>( i );
for ( int j = 0; j < backgroundModel[0]->cols; j++ )
split( *backgroundModel[i], channelSplit[i] );
}
//Bubble sort : Template T1 - Tk
for ( int i = 1; i < backGroundModelSize - 1; i++ )
{
// scan background model vector from T1 to Tk
for ( size_t z = 1; z < backgroundModel.size(); z++ )
// compare and order the i-th template with the others
for ( int j = i + 1; j < backGroundModelSize; j++ )
{
Vec2f bgModel_zP = backgroundModel[z]->ptr<Vec2f>( i )[j];
// Fill vector of pairs
pixelTemplates[z - 1].first = bgModel_zP[0]; // Current B (background value)
pixelTemplates[z - 1].second = bgModel_zP[1]; // Current C (efficacy value)
}
//SORT template from T1 to Tk
std::sort( pixelTemplates.begin(), pixelTemplates.end(), pairCompare );
compare( channelSplit[j][1], channelSplit[i][1], dstMask, CMP_GT );
//REFILL CURRENT MODEL ( T1...Tk)
for ( size_t zz = 1; zz < backgroundModel.size(); zz++ )
{
backgroundModel[zz]->ptr<Vec2f>( i )[j][0] = pixelTemplates[zz - 1].first; // Replace previous B with new ordered B value
backgroundModel[zz]->ptr<Vec2f>( i )[j][1] = pixelTemplates[zz - 1].second; // Replace previous C with new ordered C value
channelSplit[i][0].copyTo( tempMat );
channelSplit[j][0].copyTo( channelSplit[i][0], dstMask );
tempMat.copyTo( channelSplit[j][0], dstMask );
channelSplit[i][1].copyTo( tempMat );
channelSplit[j][1].copyTo( channelSplit[i][1], dstMask );
tempMat.copyTo( channelSplit[j][1], dstMask );
}
}
// SORT Template T0 and T1
if( bgModel_1P[j][1] > thetaL && bgModel_0P[j][1] < thetaL )
{
Mat M_deltaL( backgroundModel[0]->rows, backgroundModel[0]->cols, CV_32F, Scalar( thetaL ) );
// swap B value of T0 with B value of T1 (for current model)
swap( bgModel_0P[j][0], bgModel_1P[j][0] );
compare( channelSplit[1][1], M_deltaL, dstMask2, CMP_GT );
compare( M_deltaL, channelSplit[0][1], dstMask3, CMP_GT );
// set new C0 value for current model)
swap( bgModel_0P[j][1], bgModel_1P[j][1] );
bgModel_0P[j][1] = (float) gamma * thetaL;
threshold( dstMask2, dstMask2, 0, 1, THRESH_BINARY );
threshold( dstMask3, dstMask3, 0, 1, THRESH_BINARY );
}
bitwise_and( dstMask2, dstMask3, dstMask );
}
//copy correct B element of T1 inside T0 and swap
channelSplit[0][0].copyTo( tempMat );
channelSplit[1][0].copyTo( channelSplit[0][0], dstMask );
tempMat.copyTo( channelSplit[1][0], dstMask );
//copy correct C element of T0 inside T1
channelSplit[0][1].copyTo( channelSplit[1][1], dstMask );
//set new C0 values as gamma * thetaL
M_deltaL.mul( gamma );
M_deltaL.copyTo( channelSplit[0][1], dstMask );
for ( int i = 0; i < backGroundModelSize; i++ )
{
merge( channelSplit[i], *backgroundModel[i] );
}
return true;
}
bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask, const Mat& image )
{
std::vector<Mat> temp;
......@@ -351,6 +396,8 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
{
thetaA = 50;
thetaL = 150;
/* thetaA = 5;
thetaL = 15;*/
neighborhoodCheck = false;
}
......@@ -364,19 +411,19 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
int roiSize = 3; // FIXED ROI SIZE, not change until you first appropriately adjust the following controls in the EVALUATION section!
int countNonZeroElements = 0;
std::vector<Mat> mv;
Mat replicateCurrentBAMat( roiSize, roiSize, CV_32F );
Mat replicateCurrentBAMat( roiSize, roiSize, CV_8U );
Mat backgroundModelROI( roiSize, roiSize, CV_32F );
Mat diffResult( roiSize, roiSize, CV_32F );
Mat diffResult( roiSize, roiSize, CV_8U );
// Scan all pixels of finalBFMask and all pixels of others models (the dimension are the same)
const float* finalBFMaskP;
Vec2f* pbgP;
const uchar* finalBFMaskP;
Vec2b* pbgP;
const uchar* imageP;
float* epslonP;
for ( int i = 0; i < finalBFMask.rows; i++ )
{
finalBFMaskP = finalBFMask.ptr<float>( i );
pbgP = potentialBackground.ptr<Vec2f>( i );
finalBFMaskP = finalBFMask.ptr<uchar>( i );
pbgP = potentialBackground.ptr<Vec2b>( i );
imageP = image.ptr<uchar>( i );
epslonP = epslonPixelsValue.ptr<float>( i );
for ( int j = 0; j < finalBFMask.cols; j++ )
......@@ -388,7 +435,7 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
* will be loaded into BA and CA will be set to 1*/
if( pbgP[j][1] == 0 )
{
pbgP[j][0] = (float) imageP[j];
pbgP[j][0] = imageP[j];
pbgP[j][1] = 1;
}
......@@ -471,6 +518,8 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
resize( replicateCurrentBAMat, replicateCurrentBAMat, Size( backgroundModelROI.cols, backgroundModelROI.rows ), 0, 0, INTER_LINEAR );
resize( diffResult, diffResult, Size( backgroundModelROI.cols, backgroundModelROI.rows ), 0, 0, INTER_LINEAR );
backgroundModelROI.convertTo( backgroundModelROI, CV_8U );
absdiff( replicateCurrentBAMat, backgroundModelROI, diffResult );
threshold( diffResult, diffResult, epslonP[j], 255, THRESH_BINARY_INV );
countNonZeroElements = countNonZero( diffResult );
......@@ -479,9 +528,9 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
{
/////////////////// REPLACEMENT of backgroundModel template ///////////////////
//replace TA with current TK
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = std::numeric_limits<float>::quiet_NaN();
potentialBackground.at<Vec2f>( i, j )[1] = 0;
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2b>( i, j );
potentialBackground.at<Vec2b>( i, j )[0] = 0;
potentialBackground.at<Vec2b>( i, j )[1] = 0;
break;
}
......@@ -489,9 +538,9 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
}
else
{
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = std::numeric_limits<float>::quiet_NaN();
potentialBackground.at<Vec2f>( i, j )[1] = 0;
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2b>( i, j );
potentialBackground.at<Vec2b>( i, j )[0] = 0;
potentialBackground.at<Vec2b>( i, j )[1] = 0;
}
} // close if of EVALUATION
} // end of if( finalBFMask.at<uchar>( i, j ) == 1 ) // i.e. the corresponding frame pixel has been market as foreground
......@@ -502,25 +551,108 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
return true;
}
bool MotionSaliencyBinWangApr2014::activityControl( const Mat& current_noisePixelsMask )
{
Mat discordanceFramesNoise, not_current_noisePixelsMask;
Mat nonZeroIndexes, not_discordanceFramesNoise; //u_current_noisePixelsMask;
//current_noisePixelsMask.convertTo( u_current_noisePixelsMask, CV_8UC1 );
// Derive the discrepancy between noise in the frame n-1 and frame n
//threshold( u_current_noisePixelsMask, not_current_noisePixelsMask, 0.5, 1.0, THRESH_BINARY_INV );
threshold( current_noisePixelsMask, not_current_noisePixelsMask, 0.5, 1.0, THRESH_BINARY_INV );
bitwise_and( noisePixelMask, not_current_noisePixelsMask, discordanceFramesNoise );
// indices in which the pixel at frame n-1 was the noise (or not) and now no (or yes) (blinking pixels)
findNonZero( discordanceFramesNoise, nonZeroIndexes );
Vec2i temp;
// we increase the activity value of these pixels
for ( int i = 0; i < nonZeroIndexes.rows; i++ )
{
//TODO check rows, cols inside at
temp = nonZeroIndexes.at<Vec2i>( i );
if( activityPixelsValue.at<uchar>( temp.val[1], temp.val[0] ) < Bmax )
{
activityPixelsValue.at<uchar>( temp.val[1], temp.val[0] ) += Ainc;
}
}
// decrement other pixels that have not changed (not blinking)
threshold( discordanceFramesNoise, not_discordanceFramesNoise, 0.5, 1.0, THRESH_BINARY_INV );
findNonZero( not_discordanceFramesNoise, nonZeroIndexes );
Vec2i temp2;
for ( int j = 0; j < nonZeroIndexes.rows; j++ )
{
temp2 = nonZeroIndexes.at<Vec2i>( j );
if( activityPixelsValue.at<uchar>( temp2.val[1], temp2.val[0] ) > 0 )
{
activityPixelsValue.at<uchar>( temp2.val[1], temp2.val[0] ) -= 1;
}
}
// update the noisePixelsMask
current_noisePixelsMask.copyTo( noisePixelMask );
return true;
}
bool MotionSaliencyBinWangApr2014::decisionThresholdAdaptation()
{
for ( int i = 0; i < activityPixelsValue.rows; i++ )
{
for ( int j = 0; j < activityPixelsValue.cols; j++ )
{
if( activityPixelsValue.at<uchar>( i, j ) > Binc && ( epslonPixelsValue.at<float>( i, j ) + deltaINC ) < epslonMAX )
{
epslonPixelsValue.at<float>( i, j ) += deltaINC;
}
else if( activityPixelsValue.at<uchar>( i, j ) < Bdec && ( epslonPixelsValue.at<float>( i, j ) - deltaDEC ) > epslonMIN )
{
epslonPixelsValue.at<float>( i, j ) -= deltaDEC;
}
}
}
return true;
}
bool MotionSaliencyBinWangApr2014::computeSaliencyImpl( InputArray image, OutputArray saliencyMap )
{
Mat highResBFMask;
Mat lowResBFMask;
CV_Assert(image.channels() == 1);
Mat highResBFMask, u_highResBFMask;
Mat lowResBFMask, u_lowResBFMask;
Mat not_lowResBFMask;
Mat noisePixelsMask;
Mat current_noisePixelsMask;
fullResolutionDetection( image.getMat(), highResBFMask );
lowResolutionDetection( image.getMat(), lowResBFMask );
// Compute the final background-foreground mask. One pixel is marked as foreground if and only if it is
// foreground in both masks (full and low)
bitwise_and( highResBFMask, lowResBFMask, saliencyMap );
if( activityControlFlag )
{
// Detect the noise pixels (i.e. for a given pixel, fullRes(pixel) = foreground and lowRes(pixel)= background)
threshold( lowResBFMask, not_lowResBFMask, 0.5, 1.0, THRESH_BINARY_INV );
bitwise_and( highResBFMask, not_lowResBFMask, current_noisePixelsMask );
activityControl( current_noisePixelsMask );
decisionThresholdAdaptation();
}
templateOrdering();
templateReplacement( saliencyMap.getMat(), image.getMat() );
templateOrdering();
activityControlFlag = true;
return true;
}
......
......@@ -51,19 +51,6 @@ Saliency::~Saliency()
}
Ptr<Saliency> Saliency::create( const String& saliencyType )
{
if (saliencyType == "SPECTRAL_RESIDUAL")
return makePtr<StaticSaliencySpectralResidual>();
else if (saliencyType == "FINE_GRAINED")
return makePtr<StaticSaliencyFineGrained>();
else if (saliencyType == "BING")
return makePtr<ObjectnessBING>();
else if (saliencyType == "BinWangApr2014")
return makePtr<MotionSaliencyBinWangApr2014>();
return Ptr<Saliency>();
}
bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap )
{
if( image.empty() )
......@@ -72,10 +59,5 @@ bool Saliency::computeSaliency( InputArray image, OutputArray saliencyMap )
return computeSaliencyImpl( image, saliencyMap );
}
String Saliency::getClassName() const
{
return className;
}
} /* namespace saliency */
} /* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment