Commit 45f9d571 authored by Alexander Alekhin's avatar Alexander Alekhin

matlab: fix conversion functions

parent a1815ca8
set(BUILD_opencv_matlab_INIT OFF) # Matlab module is broken
# ---------------------------------------------------------------------------- # ----------------------------------------------------------------------------
# CMake file for Matlab/Octave support # CMake file for Matlab/Octave support
# #
......
...@@ -249,13 +249,13 @@ public: ...@@ -249,13 +249,13 @@ public:
case mxUINT16_CLASS: deepCopyAndTranspose<uint16_t, Scalar>(ptr_, mat); break; case mxUINT16_CLASS: deepCopyAndTranspose<uint16_t, Scalar>(ptr_, mat); break;
case mxINT32_CLASS: deepCopyAndTranspose<int32_t, Scalar>(ptr_, mat); break; case mxINT32_CLASS: deepCopyAndTranspose<int32_t, Scalar>(ptr_, mat); break;
case mxUINT32_CLASS: deepCopyAndTranspose<uint32_t, Scalar>(ptr_, mat); break; case mxUINT32_CLASS: deepCopyAndTranspose<uint32_t, Scalar>(ptr_, mat); break;
case mxINT64_CLASS: deepCopyAndTranspose<int64_t, Scalar>(ptr_, mat); break; //case mxINT64_CLASS: deepCopyAndTranspose<int64_t, Scalar>(ptr_, mat); break;
case mxUINT64_CLASS: deepCopyAndTranspose<uint64_t, Scalar>(ptr_, mat); break; //case mxUINT64_CLASS: deepCopyAndTranspose<uint64_t, Scalar>(ptr_, mat); break;
case mxSINGLE_CLASS: deepCopyAndTranspose<float, Scalar>(ptr_, mat); break; case mxSINGLE_CLASS: deepCopyAndTranspose<float, Scalar>(ptr_, mat); break;
case mxDOUBLE_CLASS: deepCopyAndTranspose<double, Scalar>(ptr_, mat); break; case mxDOUBLE_CLASS: deepCopyAndTranspose<double, Scalar>(ptr_, mat); break;
case mxCHAR_CLASS: deepCopyAndTranspose<char, Scalar>(ptr_, mat); break; case mxCHAR_CLASS: deepCopyAndTranspose<char, Scalar>(ptr_, mat); break;
case mxLOGICAL_CLASS: deepCopyAndTranspose<int8_t, Scalar>(ptr_, mat); break; case mxLOGICAL_CLASS: deepCopyAndTranspose<int8_t, Scalar>(ptr_, mat); break;
default: matlab::error("Attempted to convert from unknown class"); default: matlab::error("Attempted to convert from unknown/unsupported class");
} }
return mat; return mat;
} }
...@@ -576,13 +576,13 @@ cv::Mat Bridge::toMat<matlab::InheritType>() const { ...@@ -576,13 +576,13 @@ cv::Mat Bridge::toMat<matlab::InheritType>() const {
case mxUINT16_CLASS: return toMat<uint16_t>(); case mxUINT16_CLASS: return toMat<uint16_t>();
case mxINT32_CLASS: return toMat<int32_t>(); case mxINT32_CLASS: return toMat<int32_t>();
case mxUINT32_CLASS: return toMat<int32_t>(); case mxUINT32_CLASS: return toMat<int32_t>();
case mxINT64_CLASS: return toMat<int64_t>(); //case mxINT64_CLASS: return toMat<int64_t>();
case mxUINT64_CLASS: return toMat<int64_t>(); //case mxUINT64_CLASS: return toMat<int64_t>();
case mxSINGLE_CLASS: return toMat<float>(); case mxSINGLE_CLASS: return toMat<float>();
case mxDOUBLE_CLASS: return toMat<float>(); //NOTE: OpenCV uses float as native type! case mxDOUBLE_CLASS: return toMat<float>(); //NOTE: OpenCV uses float as native type!
case mxCHAR_CLASS: return toMat<int8_t>(); case mxCHAR_CLASS: return toMat<int8_t>();
case mxLOGICAL_CLASS: return toMat<int8_t>(); case mxLOGICAL_CLASS: return toMat<int8_t>();
default: matlab::error("Attempted to convert from unknown class"); default: matlab::error("Attempted to convert from unknown/unsuported class");
} }
return cv::Mat(); return cv::Mat();
} }
...@@ -598,18 +598,26 @@ cv::Mat Bridge::toMat() const { return toMat<matlab::InheritType>(); } ...@@ -598,18 +598,26 @@ cv::Mat Bridge::toMat() const { return toMat<matlab::InheritType>(); }
template <typename InputScalar, typename OutputScalar> template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const cv::Mat& in, matlab::MxArray& out) { void deepCopyAndTranspose(const cv::Mat& in, matlab::MxArray& out) {
const int cols = out.cols();
const int rows = out.rows();
matlab::conditionalError(static_cast<size_t>(in.rows) == out.rows(), "Matrices must have the same number of rows"); matlab::conditionalError(static_cast<size_t>(in.rows) == out.rows(), "Matrices must have the same number of rows");
matlab::conditionalError(static_cast<size_t>(in.cols) == out.cols(), "Matrices must have the same number of cols"); matlab::conditionalError(static_cast<size_t>(in.cols) == out.cols(), "Matrices must have the same number of cols");
matlab::conditionalError(static_cast<size_t>(in.channels()) == out.channels(), "Matrices must have the same number of channels"); matlab::conditionalError(static_cast<size_t>(in.channels()) == out.channels(), "Matrices must have the same number of channels");
std::vector<cv::Mat> channels; std::vector<cv::Mat> channels;
cv::split(in, channels); cv::split(in, channels);
for (size_t c = 0; c < out.channels(); ++c) { for (size_t c = 0; c < out.channels(); ++c) {
cv::transpose(channels[c], channels[c]); cv::Mat_<InputScalar> m;
cv::Mat outmat(out.cols(), out.rows(), cv::DataType<OutputScalar>::type, cv::transpose(channels[c], m);
static_cast<void *>(out.real<OutputScalar>() + out.cols()*out.rows()*c)); OutputScalar* dst_plane = (OutputScalar*)out.real<InputScalar>() + cols*rows*c;
channels[c].convertTo(outmat, cv::DataType<OutputScalar>::type); for (int x = 0; x < cols; x++)
{
OutputScalar* dst_col = dst_plane + x * rows;
for (int y = 0; y < rows; y++)
{
dst_col[y] = cv::saturate_cast<OutputScalar>(m(y, x));
}
}
} }
//const InputScalar* inp = in.ptr<InputScalar>(0); //const InputScalar* inp = in.ptr<InputScalar>(0);
//OutputScalar* outp = out.real<OutputScalar>(); //OutputScalar* outp = out.real<OutputScalar>();
//gemt('R', out.rows(), out.cols(), inp, in.step1(), outp, out.rows()); //gemt('R', out.rows(), out.cols(), inp, in.step1(), outp, out.rows());
...@@ -617,17 +625,25 @@ void deepCopyAndTranspose(const cv::Mat& in, matlab::MxArray& out) { ...@@ -617,17 +625,25 @@ void deepCopyAndTranspose(const cv::Mat& in, matlab::MxArray& out) {
template <typename InputScalar, typename OutputScalar> template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const matlab::MxArray& in, cv::Mat& out) { void deepCopyAndTranspose(const matlab::MxArray& in, cv::Mat& out) {
const int cols = in.cols();
const int rows = in.rows();
matlab::conditionalError(in.rows() == static_cast<size_t>(out.rows), "Matrices must have the same number of rows"); matlab::conditionalError(in.rows() == static_cast<size_t>(out.rows), "Matrices must have the same number of rows");
matlab::conditionalError(in.cols() == static_cast<size_t>(out.cols), "Matrices must have the same number of cols"); matlab::conditionalError(in.cols() == static_cast<size_t>(out.cols), "Matrices must have the same number of cols");
matlab::conditionalError(in.channels() == static_cast<size_t>(out.channels()), "Matrices must have the same number of channels"); matlab::conditionalError(in.channels() == static_cast<size_t>(out.channels()), "Matrices must have the same number of channels");
std::vector<cv::Mat> channels; std::vector<cv::Mat> channels;
for (size_t c = 0; c < in.channels(); ++c) { for (size_t c = 0; c < in.channels(); ++c) {
cv::Mat outmat; cv::Mat_<OutputScalar> m(cols, rows);
cv::Mat inmat(in.cols(), in.rows(), cv::DataType<InputScalar>::type, const InputScalar* src_plane = in.real<InputScalar>() + cols*rows*c;
static_cast<void *>(const_cast<InputScalar *>(in.real<InputScalar>() + in.cols()*in.rows()*c))); for (int x = 0; x < cols; x++)
inmat.convertTo(outmat, cv::DataType<OutputScalar>::type); {
cv::transpose(outmat, outmat); const InputScalar* src_col = src_plane + x * rows;
channels.push_back(outmat); for (int y = 0; y < rows; y++)
{
m(y, x) = cv::saturate_cast<InputScalar>(src_col[y]);
}
}
cv::transpose(m, m);
channels.push_back(m);
} }
cv::merge(channels, out); cv::merge(channels, out);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment