doubletmpLambda;// internal parameter, tmpLambda = alpha*alpha*( DP + k );
// Auxillary members
MatmeasurementEstimate;// estimate of current measurement (y*), MP x 1
MatsigmaPoints;// set of sigma points ( x_i, i = 1..2*DP+1 ), DP x 2*DP+1
MattransitionSPFuncVals;// set of state function values at sigma points ( f_i, i = 1..2*DP+1 ), DP x 2*DP+1
MatmeasurementSPFuncVals;// set of measurement function values at sigma points ( h_i, i = 1..2*DP+1 ), MP x 2*DP+1
MattransitionSPFuncValsCenter;// set of state function values at sigma points minus estimate of state ( fc_i, i = 1..2*DP+1 ), DP x 2*DP+1
MatmeasurementSPFuncValsCenter;// set of measurement function values at sigma points minus estimate of measurement ( hc_i, i = 1..2*DP+1 ), MP x 2*DP+1
MatWm;// vector of weights for estimate mean, 2*DP+1 x 1
MatWc;// matrix of weights for estimate covariance, 2*DP+1 x 2*DP+1
Matgain;// Kalman gain matrix (K), DP x MP
MatxyCov;// estimate of the covariance between x* and y* (Sxy), DP x MP
MatyyCov;// estimate of the y* cross-covariance matrix (Syy), MP x MP
Matr;// zero vector of process noise for getting transitionSPFuncVals,
Matq;// zero vector of measurement noise for getting measurementSPFuncVals
doubletmpLambda;// internal parameter, tmpLambda = alpha*alpha*( DP + k );
// Auxillary members
MatmeasurementEstimate;// estimate of current measurement (y*), MP x 1
MatsigmaPoints;// set of sigma points ( x_i, i = 1..2*DP+1 ), DP x 2*DP+1
MattransitionSPFuncVals;// set of state function values at sigma points ( f_i, i = 1..2*DP+1 ), DP x 2*DP+1
MatmeasurementSPFuncVals;// set of measurement function values at sigma points ( h_i, i = 1..2*DP+1 ), MP x 2*DP+1
MattransitionSPFuncValsCenter;// set of state function values at sigma points minus estimate of state ( fc_i, i = 1..2*DP+1 ), DP x 2*DP+1
MatmeasurementSPFuncValsCenter;// set of measurement function values at sigma points minus estimate of measurement ( hc_i, i = 1..2*DP+1 ), MP x 2*DP+1
MatWm;// vector of weights for estimate mean, 2*DP+1 x 1
MatWc;// matrix of weights for estimate covariance, 2*DP+1 x 2*DP+1
Matgain;// Kalman gain matrix (K), DP x MP
MatxyCov;// estimate of the covariance between x* and y* (Sxy), DP x MP
MatyyCov;// estimate of the y* cross-covariance matrix (Syy), MP x MP
Matr;// zero vector of process noise for getting transitionSPFuncVals,
Matq;// zero vector of measurement noise for getting measurementSPFuncVals