Commit 406d944e authored by sbokov's avatar sbokov

Temporal propagation in DISOpticalFlow

Added an option to pass an initial approximation of optical flow in
DISOpticalFlow. Added a python sample that demonstrates the use of this
feature for temporal propagation of flow vectors.
parent d2548239
......@@ -167,7 +167,7 @@ procedure can be found in @cite Brox2004
class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
{
public:
/** @brief calc function overload to handle separate horizontal (u) and vertical (v) flow components
/** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
(to avoid extra splits/merges) */
CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
......@@ -255,6 +255,11 @@ This class implements the Dense Inverse Search (DIS) optical flow algorithm. Mor
details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
still relatively fast, use DeepFlow if you need better quality and don't care about speed.
This implementation includes several additional features compared to the algorithm described in the paper,
including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
if the previous frame's flow field is passed).
*/
class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
{
......@@ -323,7 +328,7 @@ public:
/** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
by default as it typically provides a noticeable quality boost because of increased robustness to
illumanition variations. Turn it off if you are certain that your sequence does't contain any changes
illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
in illumination.
@see setUseMeanNormalization */
CV_WRAP virtual bool getUseMeanNormalization() const = 0;
......
......@@ -110,6 +110,9 @@ class DISOpticalFlowImpl : public DISOpticalFlow
vector<Mat_<float> > Ux; //!< x component of the flow vectors
vector<Mat_<float> > Uy; //!< y component of the flow vectors
vector<Mat_<float> > initial_Ux; //!< x component of the initial flow field, if one was passed as an input
vector<Mat_<float> > initial_Uy; //!< y component of the initial flow field, if one was passed as an input
Mat_<Vec2f> U; //!< a buffer for the merged flow
Mat_<float> Sx; //!< intermediate sparse flow representation (x component)
......@@ -121,8 +124,8 @@ class DISOpticalFlowImpl : public DISOpticalFlow
Mat_<float> I0xy_buf; //!< sum of x and y gradient products
/* Extra buffers that are useful if patch mean-normalization is used: */
Mat_<float> I0x_buf; //!< sum of of x gradient values
Mat_<float> I0y_buf; //!< sum of of y gradient values
Mat_<float> I0x_buf; //!< sum of x gradient values
Mat_<float> I0y_buf; //!< sum of y gradient values
/* Auxiliary buffers used in structure tensor computation: */
Mat_<float> I0xx_buf_aux;
......@@ -134,7 +137,7 @@ class DISOpticalFlowImpl : public DISOpticalFlow
vector<Ptr<VariationalRefinement> > variational_refinement_processors;
private: //!< private methods and parallel sections
void prepareBuffers(Mat &I0, Mat &I1);
void prepareBuffers(Mat &I0, Mat &I1, Mat &flow, bool use_flow);
void precomputeStructureTensor(Mat &dst_I0xx, Mat &dst_I0yy, Mat &dst_I0xy, Mat &dst_I0x, Mat &dst_I0y, Mat &I0x,
Mat &I0y);
......@@ -144,10 +147,11 @@ class DISOpticalFlowImpl : public DISOpticalFlow
int nstripes, stripe_sz;
int hs;
Mat *Sx, *Sy, *Ux, *Uy, *I0, *I1, *I0x, *I0y;
int num_iter;
int num_iter, pyr_level;
PatchInverseSearch_ParBody(DISOpticalFlowImpl &_dis, int _nstripes, int _hs, Mat &dst_Sx, Mat &dst_Sy,
Mat &src_Ux, Mat &src_Uy, Mat &_I0, Mat &_I1, Mat &_I0x, Mat &_I0y, int _num_iter);
Mat &src_Ux, Mat &src_Uy, Mat &_I0, Mat &_I1, Mat &_I0x, Mat &_I0y, int _num_iter,
int _pyr_level);
void operator()(const Range &range) const;
};
......@@ -185,7 +189,7 @@ DISOpticalFlowImpl::DISOpticalFlowImpl()
variational_refinement_processors.push_back(createVariationalFlowRefinement());
}
void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1)
void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1, Mat &flow, bool use_flow)
{
I0s.resize(coarsest_scale + 1);
I1s.resize(coarsest_scale + 1);
......@@ -195,6 +199,14 @@ void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1)
Ux.resize(coarsest_scale + 1);
Uy.resize(coarsest_scale + 1);
Mat flow_uv[2];
if (use_flow)
{
split(flow, flow_uv);
initial_Ux.resize(coarsest_scale + 1);
initial_Uy.resize(coarsest_scale + 1);
}
int fraction = 1;
int cur_rows = 0, cur_cols = 0;
......@@ -237,8 +249,6 @@ void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1)
resize(I1s[i - 1], I1s[i], I1s[i].size(), 0.0, 0.0, INTER_AREA);
}
fraction *= 2;
if (i >= finest_scale)
{
I1s_ext[i].create(cur_rows + 2 * border_size, cur_cols + 2 * border_size);
......@@ -253,7 +263,17 @@ void DISOpticalFlowImpl::prepareBuffers(Mat &I0, Mat &I1)
variational_refinement_processors[i]->setGamma(variational_refinement_gamma);
variational_refinement_processors[i]->setSorIterations(5);
variational_refinement_processors[i]->setFixedPointIterations(variational_refinement_iter);
if (use_flow)
{
resize(flow_uv[0], initial_Ux[i], Size(cur_cols, cur_rows));
initial_Ux[i] /= fraction;
resize(flow_uv[1], initial_Uy[i], Size(cur_cols, cur_rows));
initial_Uy[i] /= fraction;
}
}
fraction *= 2;
}
}
......@@ -377,9 +397,10 @@ void DISOpticalFlowImpl::precomputeStructureTensor(Mat &dst_I0xx, Mat &dst_I0yy,
DISOpticalFlowImpl::PatchInverseSearch_ParBody::PatchInverseSearch_ParBody(DISOpticalFlowImpl &_dis, int _nstripes,
int _hs, Mat &dst_Sx, Mat &dst_Sy,
Mat &src_Ux, Mat &src_Uy, Mat &_I0, Mat &_I1,
Mat &_I0x, Mat &_I0y, int _num_iter)
Mat &_I0x, Mat &_I0y, int _num_iter,
int _pyr_level)
: dis(&_dis), nstripes(_nstripes), hs(_hs), Sx(&dst_Sx), Sy(&dst_Sy), Ux(&src_Ux), Uy(&src_Uy), I0(&_I0), I1(&_I1),
I0x(&_I0x), I0y(&_I0y), num_iter(_num_iter)
I0x(&_I0x), I0y(&_I0y), num_iter(_num_iter), pyr_level(_pyr_level)
{
stripe_sz = (int)ceil(hs / (double)nstripes);
}
......@@ -676,10 +697,10 @@ inline float computeSSDMeanNorm(uchar *I0_ptr, uchar *I1_ptr, int I0_stride, int
void DISOpticalFlowImpl::PatchInverseSearch_ParBody::operator()(const Range &range) const
{
// force separate processing of stripes if we are using spatial propagation:
if(dis->use_spatial_propagation && range.end>range.start+1)
if (dis->use_spatial_propagation && range.end > range.start + 1)
{
for(int n=range.start;n<range.end;n++)
(*this)(Range(n,n+1));
for (int n = range.start; n < range.end; n++)
(*this)(Range(n, n + 1));
return;
}
int psz = dis->patch_size;
......@@ -708,6 +729,15 @@ void DISOpticalFlowImpl::PatchInverseSearch_ParBody::operator()(const Range &ran
float *x_ptr = dis->I0x_buf.ptr<float>();
float *y_ptr = dis->I0y_buf.ptr<float>();
bool use_temporal_candidates = false;
float *initial_Ux_ptr = NULL, *initial_Uy_ptr = NULL;
if (!dis->initial_Ux.empty())
{
initial_Ux_ptr = dis->initial_Ux[pyr_level].ptr<float>();
initial_Uy_ptr = dis->initial_Uy[pyr_level].ptr<float>();
use_temporal_candidates = true;
}
int i, j, dir;
int start_is, end_is, start_js, end_js;
int start_i, start_j;
......@@ -772,11 +802,28 @@ void DISOpticalFlowImpl::PatchInverseSearch_ParBody::operator()(const Range &ran
Sy_ptr[is * dis->ws + js] = Uy_ptr[(i + psz2) * dis->w + j + psz2];
}
if (dis->use_spatial_propagation)
float min_SSD = INF, cur_SSD;
if (use_temporal_candidates || dis->use_spatial_propagation)
{
/* Updating the current Sx_ptr, Sy_ptr to the best candidate: */
float min_SSD, cur_SSD;
COMPUTE_SSD(min_SSD, Sx_ptr[is * dis->ws + js], Sy_ptr[is * dis->ws + js]);
}
if (use_temporal_candidates)
{
/* Try temporal candidates (vectors from the initial flow field that was passed to the function) */
COMPUTE_SSD(cur_SSD, initial_Ux_ptr[(i + psz2) * dis->w + j + psz2],
initial_Uy_ptr[(i + psz2) * dis->w + j + psz2]);
if (cur_SSD < min_SSD)
{
min_SSD = cur_SSD;
Sx_ptr[is * dis->ws + js] = initial_Ux_ptr[(i + psz2) * dis->w + j + psz2];
Sy_ptr[is * dis->ws + js] = initial_Uy_ptr[(i + psz2) * dis->w + j + psz2];
}
}
if (dis->use_spatial_propagation)
{
/* Try spatial candidates: */
if (dir * js > dir * start_js)
{
COMPUTE_SSD(cur_SSD, Sx_ptr[is * dis->ws + js - dir], Sy_ptr[is * dis->ws + js - dir]);
......@@ -967,12 +1014,16 @@ void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flo
Mat I0Mat = I0.getMat();
Mat I1Mat = I1.getMat();
bool use_input_flow = false;
if (flow.sameSize(I0) && flow.depth() == CV_32F && flow.channels() == 2)
use_input_flow = true;
else
flow.create(I1Mat.size(), CV_32FC2);
Mat &flowMat = flow.getMatRef();
coarsest_scale = (int)(log((2 * I0Mat.cols) / (4.0 * patch_size)) / log(2.0) + 0.5) - 1;
int num_stripes = getNumThreads();
prepareBuffers(I0Mat, I1Mat);
prepareBuffers(I0Mat, I1Mat, flowMat, use_input_flow);
Ux[coarsest_scale].setTo(0.0f);
Uy[coarsest_scale].setTo(0.0f);
......@@ -990,13 +1041,13 @@ void DISOpticalFlowImpl::calc(InputArray I0, InputArray I1, InputOutputArray flo
* with spatial propagation reproducible
*/
parallel_for_(Range(0, 8), PatchInverseSearch_ParBody(*this, 8, hs, Sx, Sy, Ux[i], Uy[i], I0s[i],
I1s_ext[i], I0xs[i], I0ys[i], 2));
I1s_ext[i], I0xs[i], I0ys[i], 2, i));
}
else
{
parallel_for_(Range(0, num_stripes),
PatchInverseSearch_ParBody(*this, num_stripes, hs, Sx, Sy, Ux[i], Uy[i], I0s[i], I1s_ext[i],
I0xs[i], I0ys[i], 1));
I0xs[i], I0ys[i], 1, i));
}
parallel_for_(Range(0, num_stripes),
......
#!/usr/bin/env python
'''
example to show optical flow estimation using DISOpticalFlow
USAGE: dis_opt_flow.py [<video_source>]
Keys:
1 - toggle HSV flow visualization
2 - toggle glitch
3 - toggle spatial propagation of flow vectors
4 - toggle temporal propagation of flow vectors
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import video
def draw_flow(img, flow, step=16):
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.polylines(vis, lines, 0, (0, 255, 0))
for (x1, y1), (x2, y2) in lines:
cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
return vis
def draw_hsv(flow):
h, w = flow.shape[:2]
fx, fy = flow[:,:,0], flow[:,:,1]
ang = np.arctan2(fy, fx) + np.pi
v = np.sqrt(fx*fx+fy*fy)
hsv = np.zeros((h, w, 3), np.uint8)
hsv[...,0] = ang*(180/np.pi/2)
hsv[...,1] = 255
hsv[...,2] = np.minimum(v*4, 255)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return bgr
def warp_flow(img, flow):
h, w = flow.shape[:2]
flow = -flow
flow[:,:,0] += np.arange(w)
flow[:,:,1] += np.arange(h)[:,np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
if __name__ == '__main__':
import sys
print(__doc__)
try:
fn = sys.argv[1]
except IndexError:
fn = 0
cam = video.create_capture(fn)
ret, prev = cam.read()
prevgray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
show_hsv = False
show_glitch = False
use_spatial_propagation = False
use_temporal_propagation = True
cur_glitch = prev.copy()
inst = cv2.optflow.createOptFlow_DIS(cv2.optflow.DISOPTICAL_FLOW_PRESET_MEDIUM)
inst.setUseSpatialPropagation(use_spatial_propagation)
flow = None
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if flow is not None and use_temporal_propagation:
#warp previous flow to get an initial approximation for the current flow:
flow = inst.calc(prevgray, gray, warp_flow(flow,flow))
else:
flow = inst.calc(prevgray, gray, None)
prevgray = gray
cv2.imshow('flow', draw_flow(gray, flow))
if show_hsv:
cv2.imshow('flow HSV', draw_hsv(flow))
if show_glitch:
cur_glitch = warp_flow(cur_glitch, flow)
cv2.imshow('glitch', cur_glitch)
ch = 0xFF & cv2.waitKey(5)
if ch == 27:
break
if ch == ord('1'):
show_hsv = not show_hsv
print('HSV flow visualization is', ['off', 'on'][show_hsv])
if ch == ord('2'):
show_glitch = not show_glitch
if show_glitch:
cur_glitch = img.copy()
print('glitch is', ['off', 'on'][show_glitch])
if ch == ord('3'):
use_spatial_propagation = not use_spatial_propagation
inst.setUseSpatialPropagation(use_spatial_propagation)
print('spatial propagation is', ['off', 'on'][use_spatial_propagation])
if ch == ord('4'):
use_temporal_propagation = not use_temporal_propagation
print('temporal propagation is', ['off', 'on'][use_temporal_propagation])
cv2.destroyAllWindows()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment