Commit 380e6111 authored by Maksim Shabunin's avatar Maksim Shabunin

Doc files reorganized

parent 7d9bbdca
File mode changed from 100755 to 100644
File mode changed from 100755 to 100644
This diff is collapsed.
/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/core.hpp"
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
using namespace cv;
using namespace cv::face;
using namespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// Create and return normalized image:
Mat dst;
switch(src.channels()) {
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 2) {
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
exit(1);
}
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
//
// If you want to create a FaceRecognizer with a
// confidennce threshold, call it with:
//
// cv::createEigenFaceRecognizer(10, 123.0);
//
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Sometimes you'll need to get/set internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// First we'll use it to set the threshold of the FaceRecognizer
// to 0.0 without retraining the model. This can be useful if
// you are evaluating the model:
//
model->set("threshold", 0.0);
// Now the threshold of this model is set to 0.0. A prediction
// now returns -1, as it's impossible to have a distance below
// it
predictedLabel = model->predict(testSample);
cout << "Predicted class = " << predictedLabel << endl;
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors (read Eigenfaces):
Mat W = model->getMat("eigenvectors");
// From this we will display the (at most) first 10 Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
imshow(format("%d", i), cgrayscale);
}
waitKey(0);
return 0;
}
...@@ -658,7 +658,7 @@ at/s17/3.pgm;1 ...@@ -658,7 +658,7 @@ at/s17/3.pgm;1
Here is the script, if you can't find it: Here is the script, if you can't find it:
@verbinclude face/doc/src/create_csv.py @verbinclude face/samples/src/create_csv.py
### Aligning Face Images {#tutorial_face_appendix_align} ### Aligning Face Images {#tutorial_face_appendix_align}
...@@ -677,7 +677,7 @@ where: ...@@ -677,7 +677,7 @@ where:
If you are using the same *offset_pct* and *dest_sz* for your images, they are all aligned at the If you are using the same *offset_pct* and *dest_sz* for your images, they are all aligned at the
eyes. eyes.
@verbinclude face/doc/src/crop_face.py @verbinclude face/samples/src/crop_face.py
Imagine we are given [this photo of Arnold Imagine we are given [this photo of Arnold
Schwarzenegger](http://en.wikipedia.org/wiki/File:Arnold_Schwarzenegger_edit%28ws%29.jpg), which is Schwarzenegger](http://en.wikipedia.org/wiki/File:Arnold_Schwarzenegger_edit%28ws%29.jpg), which is
...@@ -689,11 +689,11 @@ Here are some examples: ...@@ -689,11 +689,11 @@ Here are some examples:
Configuration | Cropped, Scaled, Rotated Face Configuration | Cropped, Scaled, Rotated Face
--------------------------------|------------------------------------------------------------------ --------------------------------|------------------------------------------------------------------
0.1 (10%), 0.1 (10%), (200,200) | ![](tutorial/gender_classification/arnie_10_10_200_200.jpg) 0.1 (10%), 0.1 (10%), (200,200) | ![](tutorials/gender_classification/arnie_10_10_200_200.jpg)
0.2 (20%), 0.2 (20%), (200,200) | ![](tutorial/gender_classification/arnie_20_20_200_200.jpg) 0.2 (20%), 0.2 (20%), (200,200) | ![](tutorials/gender_classification/arnie_20_20_200_200.jpg)
0.3 (30%), 0.3 (30%), (200,200) | ![](tutorial/gender_classification/arnie_30_30_200_200.jpg) 0.3 (30%), 0.3 (30%), (200,200) | ![](tutorials/gender_classification/arnie_30_30_200_200.jpg)
0.2 (20%), 0.2 (20%), (70,70) | ![](tutorial/gender_classification/arnie_20_20_70_70.jpg) 0.2 (20%), 0.2 (20%), (70,70) | ![](tutorials/gender_classification/arnie_20_20_70_70.jpg)
### CSV for the AT&T Facedatabase {#tutorial_face_appendix_attcsv} ### CSV for the AT&T Facedatabase {#tutorial_face_appendix_attcsv}
@verbinclude face/doc/etc/at.txt @verbinclude face/samples/etc/at.txt
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Author: Tolga Birdal <tbirdal AT gmail.com>
#include "opencv2/surface_matching.hpp"
#include <iostream>
#include "opencv2/surface_matching/ppf_helpers.hpp"
#include "opencv2/core/utility.hpp"
using namespace std;
using namespace cv;
using namespace ppf_match_3d;
static void help(const string& errorMessage)
{
cout << "Program init error : "<< errorMessage << endl;
cout << "\nUsage : ppf_matching [input model file] [input scene file]"<< endl;
cout << "\nPlease start again with new parameters"<< endl;
}
int main(int argc, char** argv)
{
// welcome message
cout << "****************************************************" << endl;
cout << "* Surface Matching demonstration : demonstrates the use of surface matching"
" using point pair features." << endl;
cout << "* The sample loads a model and a scene, where the model lies in a different"
" pose than the training.\n* It then trains the model and searches for it in the"
" input scene. The detected poses are further refined by ICP\n* and printed to the "
" standard output." << endl;
cout << "****************************************************" << endl;
if (argc < 3)
{
help("Not enough input arguments");
exit(1);
}
#if (defined __x86_64__ || defined _M_X64)
cout << "Running on 64 bits" << endl;
#else
cout << "Running on 32 bits" << endl;
#endif
#ifdef _OPENMP
cout << "Running with OpenMP" << endl;
#else
cout << "Running without OpenMP and without TBB" << endl;
#endif
string modelFileName = (string)argv[1];
string sceneFileName = (string)argv[2];
Mat pc = loadPLYSimple(modelFileName.c_str(), 1);
// Now train the model
cout << "Training..." << endl;
int64 tick1 = cv::getTickCount();
ppf_match_3d::PPF3DDetector detector(0.025, 0.05);
detector.trainModel(pc);
int64 tick2 = cv::getTickCount();
cout << endl << "Training complete in "
<< (double)(tick2-tick1)/ cv::getTickFrequency()
<< " sec" << endl << "Loading model..." << endl;
// Read the scene
Mat pcTest = loadPLYSimple(sceneFileName.c_str(), 1);
// Match the model to the scene and get the pose
cout << endl << "Starting matching..." << endl;
vector<Pose3DPtr> results;
tick1 = cv::getTickCount();
detector.match(pcTest, results, 1.0/40.0, 0.05);
tick2 = cv::getTickCount();
cout << endl << "PPF Elapsed Time " <<
(tick2-tick1)/cv::getTickFrequency() << " sec" << endl;
// Get only first N results
int N = 2;
vector<Pose3DPtr> resultsSub(results.begin(),results.begin()+N);
// Create an instance of ICP
ICP icp(100, 0.005f, 2.5f, 8);
int64 t1 = cv::getTickCount();
// Register for all selected poses
cout << endl << "Performing ICP on " << N << " poses..." << endl;
icp.registerModelToScene(pc, pcTest, resultsSub);
int64 t2 = cv::getTickCount();
cout << endl << "ICP Elapsed Time " <<
(t2-t1)/cv::getTickFrequency() << " sec" << endl;
cout << "Poses: " << endl;
// debug first five poses
for (size_t i=0; i<resultsSub.size(); i++)
{
Pose3DPtr result = resultsSub[i];
cout << "Pose Result " << i << endl;
result->printPose();
if (i==0)
{
Mat pct = transformPCPose(pc, result->pose);
writePLY(pct, "para6700PCTrans.ply");
}
}
return 0;
}
...@@ -111,7 +111,7 @@ point sampling, I will be leaving that aside now in order to respect the general ...@@ -111,7 +111,7 @@ point sampling, I will be leaving that aside now in order to respect the general
methods (Typically for such algorithms training on a CAD model is not needed, and a point cloud methods (Typically for such algorithms training on a CAD model is not needed, and a point cloud
would be sufficient). Below is the outline of the entire algorithm: would be sufficient). Below is the outline of the entire algorithm:
![Outline of the Algorithm](surface_matching/pics/outline.jpg) ![Outline of the Algorithm](img/outline.jpg)
As explained, the algorithm relies on the extraction and indexing of point pair features, which are As explained, the algorithm relies on the extraction and indexing of point pair features, which are
defined as follows: defined as follows:
...@@ -337,11 +337,11 @@ Results ...@@ -337,11 +337,11 @@ Results
This section is dedicated to the results of surface matching (point-pair-feature matching and a This section is dedicated to the results of surface matching (point-pair-feature matching and a
following ICP refinement): following ICP refinement):
![Several matches of a single frog model using ppf + icp](surface_matching/pics/gsoc_forg_matches.jpg) ![Several matches of a single frog model using ppf + icp](img/gsoc_forg_matches.jpg)
Matches of different models for Mian dataset is presented below: Matches of different models for Mian dataset is presented below:
![Matches of different models for Mian dataset](surface_matching/pics/snapshot27.jpg) ![Matches of different models for Mian dataset](img/snapshot27.jpg)
You might checkout the video on [youTube here](http://www.youtube.com/watch?v=uFnqLFznuZU). You might checkout the video on [youTube here](http://www.youtube.com/watch?v=uFnqLFznuZU).
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment