Commit 334b5c01 authored by kqwyf's avatar kqwyf

fix histogram calculation and add some tests for simpleWB

parent b32180b2
......@@ -39,7 +39,6 @@
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
#include "opencv2/core.hpp"
......@@ -59,73 +58,55 @@ void balanceWhiteSimple(std::vector<Mat_<T> > &src, Mat &dst, const float inputM
const float s1 = p; // low quantile
const float s2 = p; // high quantile
int depth = 2; // depth of histogram tree
if (src[0].depth() != CV_8U)
++depth;
int bins = 16; // number of bins at each histogram level
int nElements = src[0].depth() == CV_8U ? 256 : 4096;
int nElements = int(pow((float)bins, (float)depth));
// number of elements in histogram tree
float minValue0 = inputMin;
float maxValue0 = inputMax;
for (size_t i = 0; i < src.size(); ++i)
// deal with cv::calcHist (exclusive upper bound)
if (src[0].depth() == CV_32F || src[0].depth() == CV_64F) // floating
{
std::vector<int> hist(nElements, 0);
typename Mat_<T>::iterator beginIt = src[i].begin();
typename Mat_<T>::iterator endIt = src[i].end();
for (typename Mat_<T>::iterator it = beginIt; it != endIt; ++it)
// histogram filling
{
int pos = 0;
float minValue = inputMin - 0.5f;
float maxValue = inputMax + 0.5f;
T val = *it;
float interval = float(maxValue - minValue) / bins;
maxValue0 += MIN((inputMax - inputMin) / (nElements - 1), 1);
if (inputMax == inputMin) // single value
maxValue0 += 1;
}
else // integer
{
maxValue0 += 1;
}
for (int j = 0; j < depth; ++j)
{
int currentBin = int((val - minValue + 1e-4f) / interval);
++hist[pos + currentBin];
float interval = (maxValue0 - minValue0) / float(nElements);
pos = (pos + currentBin) * bins;
for (size_t i = 0; i < src.size(); ++i)
{
float minValue = minValue0;
float maxValue = maxValue0;
minValue = minValue + currentBin * interval;
maxValue = minValue + interval;
Mat img = src[i].reshape(1);
Mat hist;
int channels[] = {0};
int histSize[] = {nElements};
float inputRange[] = {minValue, maxValue};
const float *ranges[] = {inputRange};
interval /= bins;
}
}
calcHist(&img, 1, channels, Mat(), hist, 1, histSize, ranges, true, false);
int total = int(src[i].total());
int p1 = 0, p2 = bins - 1;
int p1 = 0, p2 = nElements - 1;
int n1 = 0, n2 = total;
float minValue = inputMin - 0.5f;
float maxValue = inputMax + 0.5f;
float interval = (maxValue - minValue) / float(bins);
for (int j = 0; j < depth; ++j)
// searching for s1 and s2
while (n1 + hist.at<float>(p1) < s1 * total / 100.0f)
{
n1 += saturate_cast<int>(hist.at<float>(p1++));
minValue += interval;
}
while (n2 - hist.at<float>(p2) > (100.0f - s2) * total / 100.0f)
{
while (n1 + hist[p1] < s1 * total / 100.0f)
{
n1 += hist[p1++];
minValue += interval;
}
p1 *= bins;
while (n2 - hist[p2] > (100.0f - s2) * total / 100.0f)
{
n2 -= hist[p2--];
maxValue -= interval;
}
p2 = (p2 + 1) * bins - 1;
interval /= bins;
n2 -= saturate_cast<int>(hist.at<float>(p2--));
maxValue -= interval;
}
src[i] = (outputMax - outputMin) * (src[i] - minValue) / (maxValue - minValue) + outputMin;
......
......@@ -5,33 +5,140 @@
namespace opencv_test { namespace {
TEST(xphoto_simplecolorbalance, regression)
TEST(xphoto_simplecolorbalance, uchar_max_value)
{
cv::String dir = cvtest::TS::ptr()->get_data_path() + "cv/xphoto/simple_white_balance/";
int nTests = 8;
cv::Ptr<cv::xphoto::WhiteBalancer> wb = cv::xphoto::createSimpleWB();
const uchar oldMax = 120, newMax = 255;
for (int i = 0; i < nTests; ++i)
{
cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1);
cv::Mat src = cv::imread( srcName, 1 );
ASSERT_TRUE(!src.empty());
Mat test = Mat::zeros(3,3,CV_8UC1);
test.at<uchar>(0, 0) = oldMax;
test.at<uchar>(0, 1) = oldMax / 2;
test.at<uchar>(0, 2) = oldMax / 4;
cv::String previousResultName = dir + cv::format( "results/%02d.jpg", i + 1 );
cv::Mat previousResult = cv::imread( previousResultName, 1 );
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(0);
wb->setInputMax(oldMax);
wb->setOutputMin(0);
wb->setOutputMax(newMax);
cv::Mat currentResult;
wb->balanceWhite(src, currentResult);
wb->balanceWhite(test, test);
double psnr = cv::PSNR(currentResult, previousResult);
double minDst, maxDst;
cv::minMaxIdx(test, &minDst, &maxDst);
EXPECT_GE( psnr, 30 );
}
ASSERT_NEAR(maxDst, newMax, 1e-4);
}
TEST(xphoto_simplecolorbalance, max_value)
TEST(xphoto_simplecolorbalance, uchar_min_value)
{
const float oldMax = 24000., newMax = 65536.;
const uchar oldMin = 120, newMin = 0;
Mat test = Mat::zeros(1,3,CV_8UC1);
test.at<uchar>(0, 0) = oldMin;
test.at<uchar>(0, 1) = (256 + oldMin) / 2;
test.at<uchar>(0, 2) = 255;
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(oldMin);
wb->setInputMax(255);
wb->setOutputMin(newMin);
wb->setOutputMax(255);
wb->balanceWhite(test, test);
double minDst, maxDst;
cv::minMaxIdx(test, &minDst, &maxDst);
ASSERT_NEAR(minDst, newMin, 1e-4);
}
TEST(xphoto_simplecolorbalance, uchar_equal_range)
{
const int N = 4;
uchar data[N] = {0, 1, 16, 255};
Mat test = Mat(1, N, CV_8UC1, data);
Mat result = Mat(1, N, CV_8UC1, data);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(0);
wb->setInputMax(255);
wb->setOutputMin(0);
wb->setOutputMax(255);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 1e-4);
}
TEST(xphoto_simplecolorbalance, uchar_single_value)
{
const int N = 4;
uchar data0[N] = {51, 51, 51, 51};
uchar data1[N] = {33, 33, 33, 33};
Mat test = Mat(1, N, CV_8UC1, data0);
Mat result = Mat(1, N, CV_8UC1, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(51);
wb->setInputMax(51);
wb->setOutputMin(33);
wb->setOutputMax(200);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 1e-4);
}
TEST(xphoto_simplecolorbalance, uchar_p)
{
const int N = 5;
uchar data0[N] = {10, 55, 102, 188, 233};
uchar data1[N] = {0, 1, 90, 254, 255};
Mat test = Mat(1, N, CV_8UC1, data0);
Mat result = Mat(1, N, CV_8UC1, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(10);
wb->setInputMax(233);
wb->setOutputMin(0);
wb->setOutputMax(255);
wb->setP(21);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 1e-4);
}
TEST(xphoto_simplecolorbalance, uchar_c3)
{
const int N = 15;
uchar data0[N] = {10, 55, 102, 55, 102, 188, 102, 188, 233, 188, 233, 10, 233, 10, 55};
uchar data1[N] = {0, 1, 90, 1, 90, 254, 90, 254, 255, 254, 255, 0, 255, 0, 1};
Mat test = Mat(1, N / 3, CV_8UC3, data0);
Mat result = Mat(1, N / 3, CV_8UC3, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(10);
wb->setInputMax(233);
wb->setOutputMin(0);
wb->setOutputMax(255);
wb->setP(21);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 1e-4);
}
TEST(xphoto_simplecolorbalance, float_max_value)
{
const float oldMax = 24000.f, newMax = 65536.f;
Mat test = Mat::zeros(3,3,CV_32FC1);
test.at<float>(0, 0) = oldMax;
......@@ -55,5 +162,112 @@ namespace opencv_test { namespace {
ASSERT_NEAR(maxDst, newMax, newMax*1e-4);
}
TEST(xphoto_simplecolorbalance, float_min_value)
{
const float oldMin = 24000.f, newMin = 0.f;
Mat test = Mat::zeros(1,3,CV_32FC1);
test.at<float>(0, 0) = oldMin;
test.at<float>(0, 1) = (65536.f + oldMin) / 2;
test.at<float>(0, 2) = 65536.f;
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(oldMin);
wb->setInputMax(65536.f);
wb->setOutputMin(newMin);
wb->setOutputMax(65536.f);
wb->balanceWhite(test, test);
double minDst, maxDst;
cv::minMaxIdx(test, &minDst, &maxDst);
ASSERT_NEAR(minDst, newMin, 65536*1e-4);
}
TEST(xphoto_simplecolorbalance, float_equal_range)
{
const int N = 5;
float data[N] = {0.f, 1.f, 16.2f, 256.3f, 4096.f};
Mat test = Mat(1, N, CV_32FC1, data);
Mat result = Mat(1, N, CV_32FC1, data);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(0);
wb->setInputMax(4096);
wb->setOutputMin(0);
wb->setOutputMax(4096);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 1e-4);
}
TEST(xphoto_simplecolorbalance, float_single_value)
{
const int N = 4;
float data0[N] = {24000.5f, 24000.5f, 24000.5f, 24000.5f};
float data1[N] = {52000.25f, 52000.25f, 52000.25f, 52000.25f};
Mat test = Mat(1, N, CV_32FC1, data0);
Mat result = Mat(1, N, CV_32FC1, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(24000.5f);
wb->setInputMax(24000.5f);
wb->setOutputMin(52000.25f);
wb->setOutputMax(65536.f);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 65536*1e-4);
}
TEST(xphoto_simplecolorbalance, float_p)
{
const int N = 5;
float data0[N] = {16000.f, 20000.5f, 24000.f, 36000.5f, 48000.f};
float data1[N] = {-16381.952f, 0.f, 16381.952f, 65536.f, 114685.952f};
Mat test = Mat(1, N, CV_32FC1, data0);
Mat result = Mat(1, N, CV_32FC1, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(16000.f);
wb->setInputMax(48000.f);
wb->setOutputMin(0.f);
wb->setOutputMax(65536.f);
wb->setP(21);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 65536*1e-4);
}
TEST(xphoto_simplecolorbalance, float_c3)
{
const int N = 15;
float data0[N] = {16000.f, 20000.5f, 24000.f, 20000.5f, 24000.f, 36000.5f, 24000.f, 36000.5f, 48000.f, 36000.5f, 48000.f, 16000.f, 48000.f, 16000.f, 20000.5f};
float data1[N] = {-16381.952f, 0.f, 16381.952f, 0.f, 16381.952f, 65536.f, 16381.952f, 65536.f, 114685.952f, 65536.f, 114685.952f, -16381.952f, 114685.952f, -16381.952f, 0.f};
Mat test = Mat(1, N / 3, CV_32FC3, data0);
Mat result = Mat(1, N / 3, CV_32FC3, data1);
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->setInputMin(16000.f);
wb->setInputMax(48000.f);
wb->setOutputMin(0.f);
wb->setOutputMax(65536.f);
wb->setP(21);
wb->balanceWhite(test, test);
double err;
cv::minMaxIdx(cv::abs(test - result), NULL, &err);
ASSERT_LE(err, 65536*1e-4);
}
}} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment