Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
310a096b
Commit
310a096b
authored
Dec 23, 2016
by
arrybn
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added im2row, tiny optimiziations
parent
6891d778
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
214 additions
and
39 deletions
+214
-39
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+75
-19
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+37
-11
convolution_layer.hpp
modules/dnn/src/layers/convolution_layer.hpp
+4
-2
elementwise_layers.hpp
modules/dnn/src/layers/elementwise_layers.hpp
+4
-2
op_im2col.hpp
modules/dnn/src/layers/op_im2col.hpp
+93
-4
torch_importer.cpp
modules/dnn/src/torch/torch_importer.cpp
+1
-1
No files found.
modules/dnn/samples/torch_enet.cpp
View file @
310a096b
...
...
@@ -20,13 +20,14 @@ const String keys =
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
"{model m || path to Torch .net model file (model_best.net) }"
"{image i || path to image file }"
"{i_blob | .0 | input blob name) }"
"{o_blob || output blob name) }"
"{c_names c || path to file with classnames for channels (categories.txt) }"
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
"{result r || path to save output blob (optional, binary format, NCHW order) }"
"{show s || whether to show all output channels or not}"
;
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
static
void
colorizeSegmentation
(
Blob
&
score
,
Mat
&
segm
,
Mat
&
legend
,
vector
<
String
>
&
classNames
);
int
main
(
int
argc
,
char
**
argv
)
{
...
...
@@ -40,8 +41,6 @@ int main(int argc, char **argv)
String
modelFile
=
parser
.
get
<
String
>
(
"model"
);
String
imageFile
=
parser
.
get
<
String
>
(
"image"
);
String
inBlobName
=
parser
.
get
<
String
>
(
"i_blob"
);
String
outBlobName
=
parser
.
get
<
String
>
(
"o_blob"
);
if
(
!
parser
.
check
())
{
...
...
@@ -78,7 +77,7 @@ int main(int argc, char **argv)
//! [Initialize network]
//! [Prepare blob]
Mat
img
=
imread
(
imageFile
);
Mat
img
=
imread
(
imageFile
)
,
input
;
if
(
img
.
empty
())
{
std
::
cerr
<<
"Can't read image from the file: "
<<
imageFile
<<
std
::
endl
;
...
...
@@ -91,15 +90,15 @@ int main(int argc, char **argv)
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
if
(
img
.
channels
()
==
3
)
cv
::
cvtColor
(
img
,
i
mg
,
cv
::
COLOR_BGR2RGB
);
cv
::
cvtColor
(
img
,
i
nput
,
cv
::
COLOR_BGR2RGB
);
i
mg
.
convertTo
(
img
,
CV_32F
,
1
/
255.0
);
i
nput
.
convertTo
(
input
,
CV_32F
,
1
/
255.0
);
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
i
mg
);
//Convert Mat to dnn::Blob image batch
dnn
::
Blob
inputBlob
=
dnn
::
Blob
::
fromImages
(
i
nput
);
//Convert Mat to dnn::Blob image batch
//! [Prepare blob]
//! [Set input blob]
net
.
setBlob
(
inBlobName
,
inputBlob
);
//set the network input
net
.
setBlob
(
""
,
inputBlob
);
//set the network input
//! [Set input blob]
cv
::
TickMeter
tm
;
...
...
@@ -112,7 +111,8 @@ int main(int argc, char **argv)
tm
.
stop
();
//! [Gather output]
dnn
::
Blob
prob
=
net
.
getBlob
(
outBlobName
);
//gather output of "prob" layer
dnn
::
Blob
prob
=
net
.
getBlob
(
net
.
getLayerNames
().
back
());
//gather output of "prob" layer
Mat
&
result
=
prob
.
matRef
();
...
...
@@ -129,6 +129,8 @@ int main(int argc, char **argv)
std
::
cout
<<
"Output blob shape "
<<
shape
<<
std
::
endl
;
std
::
cout
<<
"Inference time, ms: "
<<
tm
.
getTimeMilli
()
<<
std
::
endl
;
if
(
parser
.
has
(
"show"
))
{
std
::
vector
<
String
>
classNames
;
if
(
!
classNamesFile
.
empty
())
{
classNames
=
readClassNames
(
classNamesFile
.
c_str
());
...
...
@@ -136,17 +138,17 @@ int main(int argc, char **argv)
classNames
=
std
::
vector
<
String
>
(
classNames
.
begin
()
+
classNames
.
size
()
-
prob
.
channels
(),
classNames
.
end
());
}
Mat
segm
,
legend
;
colorizeSegmentation
(
prob
,
segm
,
legend
,
classNames
);
for
(
int
i_c
=
0
;
i_c
<
prob
.
channels
();
i_c
++
)
{
ostringstream
convert
;
convert
<<
"Channel #"
<<
i_c
;
Mat
show
;
addWeighted
(
img
,
0.2
,
segm
,
0.8
,
0.0
,
show
);
if
(
classNames
.
size
()
==
prob
.
channels
())
convert
<<
": "
<<
classNames
[
i_c
];
imshow
(
convert
.
str
().
c_str
(),
prob
.
getPlane
(
0
,
i_c
));
}
imshow
(
"Result"
,
show
);
if
(
classNames
.
size
())
imshow
(
"Legend"
,
legend
);
waitKey
();
}
return
0
;
}
//main
...
...
@@ -174,3 +176,57 @@ std::vector<String> readClassNames(const char *filename)
fp
.
close
();
return
classNames
;
}
static
void
colorizeSegmentation
(
Blob
&
score
,
Mat
&
segm
,
Mat
&
legend
,
vector
<
String
>
&
classNames
)
{
const
int
rows
=
score
.
rows
();
const
int
cols
=
score
.
cols
();
const
int
chns
=
score
.
channels
();
vector
<
Vec3i
>
colors
;
RNG
rng
(
12345678
);
cv
::
Mat
maxCl
(
rows
,
cols
,
CV_8UC1
);
cv
::
Mat
maxVal
(
rows
,
cols
,
CV_32FC1
);
for
(
int
ch
=
0
;
ch
<
chns
;
ch
++
)
{
colors
.
push_back
(
Vec3i
(
rng
.
uniform
(
0
,
256
),
rng
.
uniform
(
0
,
256
),
rng
.
uniform
(
0
,
256
)));
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
{
const
float
*
ptrScore
=
score
.
ptrf
(
0
,
ch
,
row
);
uchar
*
ptrMaxCl
=
maxCl
.
ptr
<
uchar
>
(
row
);
float
*
ptrMaxVal
=
maxVal
.
ptr
<
float
>
(
row
);
for
(
int
col
=
0
;
col
<
cols
;
col
++
)
{
if
(
ptrScore
[
col
]
>
ptrMaxVal
[
col
])
{
ptrMaxVal
[
col
]
=
ptrScore
[
col
];
ptrMaxCl
[
col
]
=
ch
;
}
}
}
}
segm
.
create
(
rows
,
cols
,
CV_8UC3
);
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
{
const
uchar
*
ptrMaxCl
=
maxCl
.
ptr
<
uchar
>
(
row
);
cv
::
Vec3b
*
ptrSegm
=
segm
.
ptr
<
cv
::
Vec3b
>
(
row
);
for
(
int
col
=
0
;
col
<
cols
;
col
++
)
{
ptrSegm
[
col
]
=
colors
[
ptrMaxCl
[
col
]];
}
}
if
(
classNames
.
size
()
==
colors
.
size
())
{
int
blockHeight
=
30
;
legend
.
create
(
blockHeight
*
classNames
.
size
(),
200
,
CV_8UC3
);
for
(
int
i
=
0
;
i
<
classNames
.
size
();
i
++
)
{
cv
::
Mat
block
=
legend
.
rowRange
(
i
*
blockHeight
,
(
i
+
1
)
*
blockHeight
);
block
=
colors
[
i
];
putText
(
block
,
classNames
[
i
],
Point
(
0
,
blockHeight
/
2
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
());
}
}
}
modules/dnn/src/layers/convolution_layer.cpp
View file @
310a096b
...
...
@@ -58,8 +58,7 @@ BaseConvolutionLayerImpl::BaseConvolutionLayerImpl():
inpH
(
0
),
inpW
(
0
),
inpCn
(
0
),
outH
(
0
),
outW
(
0
),
outCn
(
0
),
inpGroupCn
(
0
),
outGroupCn
(
0
),
ksize
(
0
),
colBlobCols
(
0
),
bias
(
false
),
tryUseOpenCL
(
false
)
ksize
(
0
),
bias
(
false
),
tryUseOpenCL
(
false
)
{
#if HAVE_CBLAS
if
(
getBlasThreads
()
!=
cv
::
getThreadNum
())
...
...
@@ -111,7 +110,7 @@ void BaseConvolutionLayerImpl::allocate(const std::vector<Blob*> &inputs, std::v
if
(
!
is1x1
())
{
col
Blob
.
create
(
Shape
(
ksize
,
colBlobCols
)
,
input
.
type
(),
allocFlags
);
col
RowBlob
.
create
(
colRowBlobShape
,
input
.
type
(),
allocFlags
);
}
}
...
...
@@ -152,7 +151,7 @@ void ConvolutionLayerImpl::computeInpOutShape(const Blob &input)
inpGroupCn
=
inpCn
/
group
;
ksize
=
inpGroupCn
*
kernel
.
height
*
kernel
.
width
;
col
BlobCols
=
outH
*
outW
;
col
RowBlobShape
=
BlobShape
(
outH
*
outW
,
ksize
)
;
}
template
<
typename
XMat
>
...
...
@@ -174,7 +173,8 @@ void ConvolutionLayerImpl::forward_(std::vector<Blob*> &inputs, std::vector<Blob
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
XMat
colMat
,
curInp
=
slice
(
inpMat
,
n
,
_Range
(
g
*
inpGroupCn
,
inpGroupCn
));
im2col
(
curInp
,
colMat
);
im2row
(
curInp
,
colMat
);
_Range
kerRange
(
g
*
outGroupCn
,
outGroupCn
);
XMat
kerMat
=
weightsMat
.
rowRange
(
kerRange
);
...
...
@@ -182,7 +182,7 @@ void ConvolutionLayerImpl::forward_(std::vector<Blob*> &inputs, std::vector<Blob
_Range
outRange
((
g
+
n
*
group
)
*
outGroupCn
,
outGroupCn
);
XMat
dstMat
=
outMat
.
rowRange
(
outRange
);
dnn
::
gemm
(
kerMat
,
colMat
,
1
,
dstMat
,
0
);
dnn
::
gemm
(
kerMat
,
colMat
,
1
,
dstMat
,
0
,
GEMM_2_T
);
if
(
bias
)
{
...
...
@@ -209,8 +209,8 @@ void ConvolutionLayerImpl::im2col(const UMat &srcImg, UMat &dstCol)
return
;
}
#ifdef HAVE_OPENCL
CV_Assert
(
im2col_ocl
(
srcImg
,
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
this
->
colBlob
.
umatRef
()));
dstCol
=
this
->
colBlob
.
umatRefConst
();
CV_Assert
(
im2col_ocl
(
srcImg
,
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
this
->
col
Row
Blob
.
umatRef
()));
dstCol
=
this
->
col
Row
Blob
.
umatRefConst
();
#else
CV_Error
(
Error
::
StsInternal
,
""
);
dstCol
=
srcImg
;
//supress warning
...
...
@@ -225,7 +225,7 @@ void ConvolutionLayerImpl::im2col(const Mat &srcImg, Mat &dstCol)
return
;
}
Mat
&
colMat
=
colBlob
.
matRef
();
Mat
&
colMat
=
col
Row
Blob
.
matRef
();
if
(
srcImg
.
type
()
==
CV_32F
)
im2col_CpuPBody
<
float
>::
run
(
srcImg
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
...
...
@@ -238,6 +238,32 @@ void ConvolutionLayerImpl::im2col(const Mat &srcImg, Mat &dstCol)
dstCol
=
colMat
;
}
void
ConvolutionLayerImpl
::
im2row
(
const
Mat
&
srcImg
,
Mat
&
dstRow
)
{
if
(
is1x1
())
{
dstRow
=
reshaped
(
srcImg
,
Shape
(
ksize
,
outH
*
outW
)).
t
();
return
;
}
Mat
&
colMat
=
colRowBlob
.
matRef
();
if
(
srcImg
.
type
()
==
CV_32F
)
im2row_CpuPBody
<
float
>::
run
(
srcImg
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
outW
,
outH
,
colMat
.
ptr
<
float
>
());
if
(
srcImg
.
type
()
==
CV_64F
)
im2row_CpuPBody
<
double
>::
run
(
srcImg
.
ptr
<
double
>
(),
inpGroupCn
,
inpH
,
inpW
,
kernel
.
height
,
kernel
.
width
,
pad
.
height
,
pad
.
width
,
stride
.
height
,
stride
.
width
,
dilation
.
height
,
dilation
.
width
,
outW
,
outH
,
colMat
.
ptr
<
double
>
());
dstRow
=
colMat
;
}
void
ConvolutionLayerImpl
::
im2row
(
const
UMat
&
srcImg
,
UMat
&
dstCol
)
{
CV_Error
(
cv
::
Error
::
StsNotImplemented
,
""
);
}
//Deconvolution
void
DeConvolutionLayerImpl
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
...
...
@@ -264,7 +290,7 @@ void DeConvolutionLayerImpl::computeInpOutShape(const Blob &inpBlob)
CV_Assert
(
inpCn
%
group
==
0
&&
outCn
%
group
==
0
);
CV_Assert
(
blobs
[
0
].
channels
()
==
outCn
&&
blobs
[
0
].
num
()
==
inpCn
/
group
);
col
BlobCols
=
inpH
*
inpW
;
col
RowBlobShape
=
BlobShape
(
ksize
,
inpH
*
inpW
)
;
}
void
DeConvolutionLayerImpl
::
forward
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
...
...
@@ -292,7 +318,7 @@ void DeConvolutionLayerImpl::forward_(std::vector<Blob *> &inputs, std::vector<B
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
XMat
dstMat
=
decnBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
outGroupCn
,
outGroupCn
));
XMat
&
colMat
=
(
is1x1
())
?
dstMat
:
colBlob
.
getRef
<
XMat
>
();
XMat
&
colMat
=
(
is1x1
())
?
dstMat
:
col
Row
Blob
.
getRef
<
XMat
>
();
XMat
convMat
=
convBlob
.
rowRange
(
_Range
((
g
+
n
*
group
)
*
inpGroupCn
,
inpGroupCn
));
XMat
wghtMat
=
weightsMat
.
rowRange
(
_Range
(
g
*
inpGroupCn
,
inpGroupCn
));
...
...
modules/dnn/src/layers/convolution_layer.hpp
View file @
310a096b
...
...
@@ -65,12 +65,12 @@ protected:
int
outH
,
outW
,
outCn
;
int
inpGroupCn
,
outGroupCn
;
int
ksize
;
int
colBlobCols
;
BlobShape
colRowBlobShape
;
bool
bias
;
bool
tryUseOpenCL
,
useOpenCL
;
Blob
colBlob
,
biasOnesBlob
;
Blob
col
Row
Blob
,
biasOnesBlob
;
};
...
...
@@ -86,7 +86,9 @@ protected:
template
<
typename
XMat
>
void
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
);
void
im2col
(
const
Mat
&
srcImg
,
Mat
&
dstCol
);
void
im2row
(
const
Mat
&
srcImg
,
Mat
&
dstRow
);
void
im2col
(
const
UMat
&
srcImg
,
UMat
&
dstCol
);
void
im2row
(
const
UMat
&
srcImg
,
UMat
&
dstCol
);
};
class
DeConvolutionLayerImpl
:
public
BaseConvolutionLayerImpl
...
...
modules/dnn/src/layers/elementwise_layers.hpp
View file @
310a096b
...
...
@@ -287,7 +287,9 @@ struct PowerFunctor
{
typedef
PowerLayer
Layer
;
double
power
,
scale
,
shift
;
const
double
power
;
const
double
scale
;
const
double
shift
;
PowerFunctor
(
double
power_
,
double
scale_
=
1
,
double
shift_
=
0
)
:
power
(
power_
),
scale
(
scale_
),
shift
(
shift_
)
{}
...
...
@@ -295,7 +297,7 @@ struct PowerFunctor
template
<
typename
TFloat
>
inline
TFloat
operator
()(
TFloat
x
)
const
{
return
pow
((
TFloat
)
shift
+
(
TFloat
)
scale
*
x
,
(
TFloat
)
power
);
return
pow
er
==
1.0
?
(
TFloat
)
shift
+
(
TFloat
)
scale
*
x
:
pow
((
TFloat
)
shift
+
(
TFloat
)
scale
*
x
,
(
TFloat
)
power
);
}
#ifdef HAVE_OPENCL
...
...
modules/dnn/src/layers/op_im2col.hpp
View file @
310a096b
...
...
@@ -114,6 +114,92 @@ public:
}
};
template
<
typename
Dtype
>
class
im2row_CpuPBody
:
public
cv
::
ParallelLoopBody
{
const
Dtype
*
data_im
;
int
channels
,
height
,
width
;
int
kernel_h
,
kernel_w
;
int
pad_h
,
pad_w
;
int
stride_h
,
stride_w
;
int
dilation_h
,
dilation_w
;
Dtype
*
data_col
;
int
height_col
,
width_col
,
channels_col
;
im2row_CpuPBody
()
{}
public
:
static
void
run
(
const
Dtype
*
data_im
,
int
channels
,
int
height
,
int
width
,
int
kernel_h
,
int
kernel_w
,
int
pad_h
,
int
pad_w
,
int
stride_h
,
int
stride_w
,
int
dilation_h
,
int
dilation_w
,
int
height_col
,
int
width_col
,
Dtype
*
data_col
)
{
im2row_CpuPBody
<
Dtype
>
t
;
t
.
data_im
=
data_im
;
t
.
data_col
=
data_col
;
t
.
channels
=
channels
;
t
.
height
=
height
;
t
.
width
=
width
;
t
.
kernel_h
=
kernel_h
;
t
.
kernel_w
=
kernel_w
;
t
.
pad_h
=
pad_h
;
t
.
pad_w
=
pad_w
;
t
.
stride_h
=
stride_h
;
t
.
stride_w
=
stride_w
;
t
.
dilation_h
=
dilation_h
;
t
.
dilation_w
=
dilation_w
;
t
.
height_col
=
height_col
;
t
.
width_col
=
width_col
;
t
.
channels_col
=
channels
*
kernel_h
*
kernel_w
;
cv
::
parallel_for_
(
Range
(
0
,
t
.
height_col
*
t
.
width_col
),
t
,
16
);
}
virtual
void
operator
()(
const
Range
&
r
)
const
{
int
dh
=
dilation_h
,
dw
=
dilation_w
;
Dtype
*
data_col_
=
data_col
;
const
Dtype
*
data_im_
=
data_im
;
for
(
int
row
=
r
.
start
;
row
<
r
.
end
;
++
row
)
{
int
out_c
=
row
%
width_col
;
int
out_r
=
row
/
width_col
;
int
out_row_offset
=
row
*
kernel_h
*
kernel_w
*
channels
;
int
start_in_r
=
out_r
*
stride_h
-
pad_h
;
int
start_in_c
=
out_c
*
stride_w
-
pad_w
;
int
start_k_r
=
std
::
max
(
0
,
cvCeil
(
-
start_in_r
/
(
float
)
dilation_h
));
int
end_k_r
=
std
::
min
(
kernel_h
,
cvCeil
((
height
-
start_in_r
)
/
(
float
)
dilation_h
));
int
start_k_c
=
std
::
max
(
0
,
cvCeil
(
-
start_in_c
/
(
float
)
dilation_w
));
int
end_k_c
=
std
::
min
(
kernel_w
,
cvCeil
((
width
-
start_in_c
)
/
(
float
)
dilation_w
));
for
(
int
i_c
=
0
;
i_c
<
channels
;
i_c
++
)
{
int
channels_offset
=
i_c
*
width
*
height
;
int
out_ch_offset
=
i_c
*
kernel_h
*
kernel_w
;
int
in_r
=
start_in_r
+
start_k_r
*
dilation_h
;
for
(
int
k_r
=
start_k_r
;
k_r
<
end_k_r
;
k_r
++
,
in_r
+=
dh
)
{
int
row_offset
=
in_r
*
width
;
int
out_col_offset
=
k_r
*
kernel_w
;
int
in_c
=
start_in_c
+
start_k_c
*
dilation_w
;
for
(
int
k_c
=
start_k_c
;
k_c
<
end_k_c
;
k_c
++
,
in_c
+=
dw
)
{
int
in_index
=
channels_offset
+
row_offset
+
in_c
;
int
out_index
=
out_row_offset
+
out_ch_offset
+
out_col_offset
+
k_c
;
data_col_
[
out_index
]
=
data_im_
[
in_index
];
}
}
}
}
}
};
template
<
typename
Dtype
>
class
col2im_CpuPBody
:
public
cv
::
ParallelLoopBody
{
...
...
@@ -154,6 +240,10 @@ public:
virtual
void
operator
()(
const
Range
&
r
)
const
{
const
Dtype
*
data_col_
=
data_col
;
Dtype
*
data_im_
=
data_im
;
int
coeff_h_col
=
(
1
-
stride_h
*
kernel_w
*
height_col
)
*
width_col
;
int
coeff_w_col
=
(
1
-
stride_w
*
height_col
*
width_col
);
for
(
int
index
=
r
.
start
;
index
<
r
.
end
;
index
++
)
{
Dtype
val
=
0
;
...
...
@@ -170,14 +260,13 @@ public:
// equivalent implementation
int
offset
=
(
c
*
kernel_h
*
kernel_w
+
h
*
kernel_w
+
w
)
*
height_col
*
width_col
;
int
coeff_h_col
=
(
1
-
stride_h
*
kernel_w
*
height_col
)
*
width_col
;
int
coeff_w_col
=
(
1
-
stride_w
*
height_col
*
width_col
);
for
(
int
h_col
=
h_col_start
;
h_col
<
h_col_end
;
++
h_col
)
{
for
(
int
w_col
=
w_col_start
;
w_col
<
w_col_end
;
++
w_col
)
{
val
+=
data_col
[
offset
+
h_col
*
coeff_h_col
+
w_col
*
coeff_w_col
];
val
+=
data_col
_
[
offset
+
h_col
*
coeff_h_col
+
w_col
*
coeff_w_col
];
}
}
data_im
[
index
]
=
val
;
data_im
_
[
index
]
=
val
;
}
}
};
...
...
modules/dnn/src/torch/torch_importer.cpp
View file @
310a096b
...
...
@@ -197,7 +197,7 @@ struct TorchImporter : public ::cv::dnn::Importer
if
(
typeStr
==
"Double"
)
return
CV_64F
;
else
if
(
typeStr
==
"Float"
)
else
if
(
typeStr
==
"Float"
||
typeStr
==
"Cuda"
)
return
CV_32F
;
else
if
(
typeStr
==
"Byte"
)
return
CV_8U
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment