Commit 309edb59 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents aaf8fffc a4e8622c
set(the_description "Modern Deep Learning module")
if(${CMAKE_VERSION} VERSION_LESS 3.2)
message(STATUS "Module opencv_dnn_modern disabled because CMake version is less than 3.2")
ocv_module_disable(dnn_modern)
return()
endif()
# Using cmake scripts and modules
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
# ----------------------------------------------------------------------------
# MODULE REQUIREMENTS
# ----------------------------------------------------------------------------
set(TINY_DNN_CPP_PATH "${OpenCV_BINARY_DIR}/3rdparty/tinydnn")
set(TINY_DNN_CPP_ROOT "${TINY_DNN_CPP_PATH}/tiny-dnn-1.0.0a3")
ocv_download(FILENAME "v1.0.0a3.tar.gz"
HASH "adb1c512e09ca2c7a6faef36f9c53e59"
URL
"${OPENCV_TINY_DNN_URL}"
"$ENV{OPENCV_TINY_DNN_URL}"
"https://github.com/tiny-dnn/tiny-dnn/archive/"
DESTINATION_DIR "${TINY_DNN_CPP_PATH}"
STATUS TINY_DNN_DOWNLOAD_SUCCESS
ID "tiny-dnn"
UNPACK RELATIVE_URL)
if(NOT TINY_DNN_DOWNLOAD_SUCCESS)
message(STATUS "Failed to download tiny-dnn sources")
endif()
find_package(TinyDNN QUIET)
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
if(NOT TinyDNN_FOUND)
message(STATUS "Module opencv_dnn_modern disabled because tiny-dnn was not found")
ocv_module_disable(dnn_modern)
return()
elseif(NOT COMPILER_SUPPORTS_CXX11)
message(STATUS "Module opencv_dnn_modern disabled because your compiler does not support C++11")
ocv_module_disable(dnn_modern)
return()
elseif(APPLE_FRAMEWORK OR ANDROID)
message(STATUS "Module opencv_dnn_modern disabled because you are not under Linux or Win")
ocv_module_disable(dnn_modern)
return()
endif()
# ----------------------------------------------------------------------------
# OPTIMIZATION OPTIONS
# ----------------------------------------------------------------------------
option(TINYDNN_USE_SSE "Build tiny-dnn with SSE library support" ON)
option(TINYDNN_USE_AVX "Build tiny-dnn with AVX library support" ON)
option(TINYDNN_USE_TBB "Build tiny-dnn with TBB library support" OFF)
option(TINYDNN_USE_OMP "Build tiny-dnn with OMP library support" OFF)
option(TINYDNN_USE_NNPACK "Build tiny-dnn with NNPACK library support" OFF)
if(TINYDNN_USE_TBB AND HAVE_TBB)
add_definitions(-DCNN_USE_TBB)
elseif(NOT TINYDNN_USE_TBB AND
TINYDNN_USE_OMP AND HAVE_OPENMP)
add_definitions(-DCNN_USE_OMP)
endif()
if(TINYDNN_USE_NNPACK)
find_package(NNPACK REQUIRED)
add_definitions(-DCNN_USE_NNPACK)
include_directories(SYSTEM ${NNPACK_INCLUDE_DIR})
include_directories(SYSTEM ${NNPACK_INCLUDE_DIR}/../third-party/pthreadpool/include)
list(APPEND REQUIRED_LIBRARIES ${NNPACK_LIB})
endif()
# we need to disable seializer unless we import cereal and we gonna use caffe converter
add_definitions(-DCNN_NO_SERIALIZATION -DCNN_USE_CAFFE_CONVERTER)
# NOTE: In case that proto files already exist,
# this is not needed anymore.
if(NOT BUILD_PROTOBUF)
find_package(Protobuf QUIET)
endif()
if(NOT ${Protobuf_FOUND})
message(STATUS "Module opencv_dnn_modern disabled because Protobuf is not found")
ocv_module_disable(dnn_modern)
return()
endif()
if(DEFINED PROTOBUF_PROTOC_EXECUTABLE AND EXISTS ${PROTOBUF_PROTOC_EXECUTABLE})
execute_process(COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} caffe.proto --cpp_out=./
WORKING_DIRECTORY ${TINYDNN_INCLUDE_DIRS}/tiny_dnn/io/caffe)
else()
message(STATUS "The protocol buffer compiler is not found (PROTOBUF_PROTOC_EXECUTABLE='${PROTOBUF_PROTOC_EXECUTABLE}')")
ocv_module_disable(dnn_modern)
return()
endif()
list(APPEND REQUIRED_LIBRARIES ${PROTOBUF_LIBRARIES})
include_directories(SYSTEM ${PROTOBUF_INCLUDE_DIRS})
####
# Setup the compiler options
# set c++ standard to c++11.
# Note: not working on CMake 2.8. We assume that user has
# a compiler with C++11 support.
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Unix
if(CMAKE_COMPILER_IS_GNUCXX OR MINGW OR
CMAKE_CXX_COMPILER_ID MATCHES "Clang")
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag("-msse3" COMPILER_HAS_SSE_FLAG)
check_cxx_compiler_flag("-mavx" COMPILER_HAS_AVX_FLAG)
check_cxx_compiler_flag("-mavx2" COMPILER_HAS_AVX2_FLAG)
check_cxx_compiler_flag("-mfma" COMPILER_HAS_AVX2_FLAG)
# set Streaming SIMD Extension (SSE) instructions
if(USE_SSE AND COMPILER_HAS_SSE_FLAG)
add_definitions(-DCNN_USE_SSE)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -msse3")
endif(USE_SSE AND COMPILER_HAS_SSE_FLAG)
# set Advanced Vector Extensions (AVX)
if(USE_AVX AND COMPILER_HAS_AVX_FLAG)
add_definitions(-DCNN_USE_AVX)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -mavx")
endif(USE_AVX AND COMPILER_HAS_AVX_FLAG)
# set Advanced Vector Extensions 2 (AVX2)
if(USE_AVX2 AND COMPILER_HAS_AVX2_FLAG)
add_definitions(-DCNN_USE_AVX2)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -mavx2 -mfma -march=core-avx2")
endif(USE_AVX2 AND COMPILER_HAS_AVX2_FLAG)
# include extra flags to the compiler
# TODO: add info about those flags.
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} -Wall -Wpedantic -Wno-narrowing")
set(EXTRA_C_FLAGS_RELEASE "${EXTRA_C_FLAGS_RELEASE} -O3")
set(EXTRA_C_FLAGS_DEBUG "${EXTRA_C_FLAGS_DEBUG} -g3 -pthread")
elseif(MSVC)
if(USE_SSE)
add_definitions(-DCNN_USE_SSE)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} /arch:SSE2")
endif(USE_SSE)
if(USE_AVX)
add_definitions(-DCNN_USE_AVX)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} /arch:AVX")
endif(USE_AVX)
if(USE_AVX2)
add_definitions(-DCNN_USE_AVX2)
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} /arch:AVX2")
endif(USE_AVX2)
# include specific flags for release and debug modes.
set(EXTRA_C_FLAGS_RELEASE "${EXTRA_C_FLAGS_RELEASE}
/Ox /Oi /Ot /Oy /GL /fp:fast /GS-")
set(CMAKE_EXE_LINKER_FLAGS_RELEASE "${CMAKE_EXE_LINKER_FLAGS_RELEASE} /LTCG")
set(EXTRA_C_FLAGS_DEBUG "${EXTRA_C_FLAGS_DEBUG}")
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} /W4 /bigobj")
# this is fine
add_definitions(-D _CRT_SECURE_NO_WARNINGS)
add_definitions(-D _SCL_SECURE_NO_WARNINGS)
add_definitions(-D NO_STRICT)
# prolly powerless with header-only project
set(EXTRA_C_FLAGS "${EXTRA_C_FLAGS} /MP")
endif()
# ----------------------------------------------------------------------------
# DNN-MODERN MODULE
# ----------------------------------------------------------------------------
ocv_define_module(dnn_modern opencv_core opencv_imgproc WRAP python)
ocv_target_link_libraries(${the_module} ${REQUIRED_LIBRARIES})
ocv_target_include_directories(${the_module} ${TINYDNN_INCLUDE_DIRS})
ocv_warnings_disable(CMAKE_CXX_FLAGS
-Wnon-virtual-dtor -Wunused-parameter -Wshadow -Wundef
/wd4265 /wd4100 /wd4458 /wd4244 /wd4456)
Modern Deep Learning Module
===========================
The module is wrapper to [tiny-dnn](https://github.com/tiny-dnn/tiny-dnn),
a header only, dependency-free deep learning framework in C++11.
Installation
------------
**Required Dependencies**
- System under Unix or Windows
- C++11 compiler
- tiny-dnn headers
- protoc compiler (part of the [protobuf](https://developers.google.com/protocol-buffers/docs/overview) library)
**How to install tiny-dnn?**
CMake will try to download a certain version of tiny-dnn which was tested to build with OpenCV.
If the latest version is needed, location of the tiny-dnn folder can be specified manually:
- Download tiny-dnn project somewhere in your system
```
cd /opt
git clone https://github.com/tiny-dnn/tiny-dnn.git
```
- Run your OpenCV CMake pointing to your tiny-dnn headers location
```
cd /opt/opencv/build
cmake -DTINYDNN_ROOT=/opt/tiny-dnn ..
make -j4
```
**Extra**
You can enable some optimizations just for tiny-dnn backend
cmake -DTINYDNN_USE_SSE=ON ..
cmake -DTINYDNN_USE_AVX=ON ..
Use third-party multithreading libs: TBB or OMP.
cmake -DTINYDNN_USE_TBB=ON .. // then disable OMP
cmake -DTINYDNN_USE_OMP=ON .. // then disable TBB
NNPACK: Acceleration package for neural networks on multi-core CPUs.<br />
Check project site for installation: [https://github.com/Maratyszcza/NNPACK](https://github.com/Maratyszcza/NNPACK)
cmake -DTINYDNN_USE_NNPACK=ON .. // not supported yet for Caffe loader
See detailed module API documentation in http://docs.opencv.org/trunk/d1/df7/group__dnn__modern.html
SET(NNPACK_INCLUDE_SEARCH_PATHS
/usr/include
/usr/local/include
/opt/NNPACK/include
$ENV{NNPACK_ROOT}
$ENV{NNPACK_ROOT}/include
)
SET(NNPACK_LIB_SEARCH_PATHS
/lib/
/lib64/
/usr/lib
/usr/lib64
/usr/local/lib
/usr/local/lib64
/opt/NNPACK/lib
$ENV{NNPACK_ROOT}
$ENV{NNPACK_ROOT}/lib
)
FIND_PATH(NNPACK_INCLUDE_DIR NAMES nnpack.h PATHS ${NNPACK_INCLUDE_SEARCH_PATHS})
FIND_LIBRARY(NNPACK_LIB NAMES nnpack PATHS ${NNPACK_LIB_SEARCH_PATHS})
SET(NNPACK_FOUND ON)
# Check include files
IF(NOT NNPACK_INCLUDE_DIR)
SET(NNPACK_FOUND OFF)
MESSAGE(STATUS "Could not find NNPACK include. Turning NNPACK_FOUND off")
ENDIF()
# Check libraries
IF(NOT NNPACK_LIB)
SET(NNPACK_FOUND OFF)
MESSAGE(STATUS "Could not find NNPACK lib. Turning NNPACK_FOUND off")
ENDIF()
IF (NNPACK_FOUND)
add_definitions(-DUSE_NNPACK)
IF (NOT NNPACK_FIND_QUIETLY)
MESSAGE(STATUS "Found NNPACK libraries: ${NNPACK_LIB}")
MESSAGE(STATUS "Found NNPACK include: ${NNPACK_INCLUDE_DIR}")
ENDIF (NOT NNPACK_FIND_QUIETLY)
ELSE (NNPACK_FOUND)
IF (NNPACK_FIND_REQUIRED)
MESSAGE(FATAL_ERROR "Could not find NNPACK")
ENDIF (NNPACK_FIND_REQUIRED)
ENDIF (NNPACK_FOUND)
MARK_AS_ADVANCED(
NNPACK_INCLUDE_DIR
NNPACK_LIB
NNPACK
)
# Locate the tiny-dnn library.
#
# Defines the following variables:
#
# TinyDNN_FOUND - TRUE if the tiny-dnn headers are found
# TINYDNN_INCLUDE_DIRS - The path to tiny-dnn headers
#
# Accepts the following variables as input:
#
# TinyDNN_ROOT - (as a CMake or environment variable)
# The root directory of the tiny-dnn install prefix
message(STATUS "Looking for tiny_dnn.h")
set(TINYDNN_INCLUDE_SEARCH_PATHS
/usr/include/tiny_dnn
/usr/local/include/tiny_dnn
/opt/tiny_dnn
$ENV{TINYDNN_ROOT}
${TINYDNN_ROOT}
${TINYDNN_ROOT}/tiny_dnn
${TINY_DNN_CPP_ROOT}
)
find_path(TINYDNN_INCLUDE_DIR
NAMES tiny_dnn/tiny_dnn.h
HINTS ${TINYDNN_INCLUDE_SEARCH_PATHS}
)
# handle the QUIETLY and REQUIRED arguments and set TinyDNN_FOUND to TRUE if
# all listed variables are TRUE
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(TinyDNN
FOUND_VAR TinyDNN_FOUND
REQUIRED_VARS TINYDNN_INCLUDE_DIR)
if(TinyDNN_FOUND)
set(TINYDNN_INCLUDE_DIRS ${TINYDNN_INCLUDE_DIR})
message(STATUS "Looking for tiny_dnn.h - found")
message(STATUS "Found tiny-dnn in: ${TINYDNN_INCLUDE_DIRS}")
else()
message(STATUS "Looking for tiny_dnn.h - not found")
endif()
mark_as_advanced(
TINYDNN_INCLUDE_DIRS
)
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2016, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_DNN_M_HPP__
#define __OPENCV_DNN_M_HPP__
#include "opencv2/core.hpp"
/** @defgroup dnn_modern Deep Learning Modern Module
* This module is based on the [tiny-dnn](https://github.com/tiny-dnn/tiny-dnn) framework.
* The module uses tiny-dnn to load and run pre-trained Caffe models.
* tiny-dnn's converter only supports single input/single output network without branches.
*/
namespace cv {
namespace dnn2 {
//! @addtogroup dnn_modern
//! @{
/** @brief Base class for tiny-dnn converter.
*/
class CV_EXPORTS_W BaseConverter
{
public:
virtual ~BaseConverter() {};
/**
@brief Evaluates single model output on single model input.
@param image input image.
@param results output form model.
*/
CV_WRAP virtual void eval(InputArray image, std::vector<float>& results) = 0;
};
/** @brief Class implementing the CaffeConverter.
Implementation of tiny-dnn Caffe converter.
Loads a pretrained Caffe model. Only support simple sequential models.
*/
class CV_EXPORTS_W CaffeConverter : public BaseConverter {
public:
/**
@brief Creates a CaffeConverter object.
@param model_file path to the prototxt file.
@param trained_file path to the caffemodel file.
@param mean_file path to binaryproto file.
*/
CV_WRAP static Ptr<CaffeConverter> create(const String& model_file,
const String& trained_file,
const String& mean_file = String());
CV_WRAP virtual void eval(InputArray image, CV_OUT std::vector<float>& results) = 0;
};
//! @}
} // namespace dnn2
} // namespace cv
#endif
/* End of file. */
#include <opencv2/dnn_modern.hpp>
#include <opencv2/imgcodecs.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
using namespace cv::dnn2;
static void help() {
cout
<< "\n----------------------------------------------------------------------------\n"
<< " This program shows how to import a Caffe model using the \n"
<< " OpenCV Modern Deep Learning module (DNN2).\n"
<< " Usage:\n"
<< " example_dnn_modern_simple_test <model_file> <trained_file> <mean_file>\n"
<< " <label_file> <image_file>\n"
<< " where: model_file is the path to the *.prototxt\n"
<< " trained_file is the path to the *.caffemodel\n"
<< " mean_file is the path to the *.binaryproto\n"
<< " label_file is the path to the labels file\n"
<< " image_file is the path to the image to evaluate\n"
<< "----------------------------------------------------------------------------\n\n"
<< endl;
}
vector<string> get_label_list(const string& label_file);
void print_n_labels(const vector<string>& labels,
const vector<float_t>& result,
const int top_n);
vector<string> get_label_list(const string& label_file) {
string line;
ifstream ifs(label_file.c_str());
if (ifs.fail() || ifs.bad()) {
throw runtime_error("failed to open:" + label_file);
}
vector<string> lines;
while (getline(ifs, line)) lines.push_back(line);
return lines;
}
void print_n_labels(const vector<string>& labels,
const vector<float_t>& result,
const int top_n) {
vector<float_t> sorted(result.begin(), result.end());
partial_sort(sorted.begin(), sorted.begin()+top_n, sorted.end(), greater<float_t>());
for (int i = 0; i < top_n; i++) {
size_t idx = distance(result.begin(), find(result.begin(), result.end(), sorted[i]));
cout << labels[idx] << "," << sorted[i] << endl;
}
}
int main(int argc, char* argv[]) {
if (argc < 6) {
help();
exit(0);
}
int arg_channel = 1;
string model_file = argv[arg_channel++];
string trained_file = argv[arg_channel++];
string mean_file = argv[arg_channel++];
string label_file = argv[arg_channel++];
string img_file = argv[arg_channel++];
// load Caffe model
Ptr<CaffeConverter> caffe_ptr = CaffeConverter::create(
model_file, trained_file, mean_file);
// load input image
cv::Mat img = cv::imread(img_file, -1);
// inference !
vector<float_t> scores;
caffe_ptr->eval(img, scores);
// retrieve n labels
const int n = 5;
vector<string> labels = get_label_list(label_file);
print_n_labels(labels, scores, n);
return 0;
}
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2016, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
#include <opencv2/imgproc.hpp>
#include <tiny_dnn/tiny_dnn.h>
#include <tiny_dnn/io/caffe/caffe.pb.cc>
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace std;
namespace cv {
namespace dnn2 {
/*
!CaffeConverter Implementation
*/
class CaffeConverter_Impl : public CaffeConverter {
public:
explicit CaffeConverter_Impl(const String& model_file,
const String& trained_file,
const String& mean_file) {
net_ = create_net_from_caffe_prototxt(model_file);
reload_weight_from_caffe_protobinary(trained_file, net_.get());
const size_t width = (*net_)[0]->in_data_shape()[0].width_;
const size_t height = (*net_)[0]->in_data_shape()[0].height_;
mean_ = compute_mean(mean_file, width, height);
}
~CaffeConverter_Impl() {}
virtual void eval(InputArray image, std::vector<float>& results);
private:
Mat compute_mean(const string& mean_file, const size_t width,
const size_t height);
ColorConversionCodes get_cvt_codes(const int src_channels,
const int dst_channels);
void preprocess(const Mat& img, const Mat& mean,
const int num_channels, const Size& geometry,
vector<Mat>* input_channels);
Mat mean_;
std::shared_ptr<network<sequential>> net_;
};
Mat
CaffeConverter_Impl::compute_mean(const string& mean_file,
const size_t width,
const size_t height) {
caffe::BlobProto blob;
::detail::read_proto_from_binary(mean_file, &blob);
vector<Mat> channels;
auto data = blob.mutable_data()->mutable_data();
const size_t offset = blob.height() * blob.width();
for (int i = 0; i < blob.channels(); i++, data += offset) {
channels.emplace_back(blob.height(), blob.width(), CV_32FC1, data);
}
Mat meanChannel;
merge(channels, meanChannel);
return Mat(Size(width, height), meanChannel.type(), mean(meanChannel));
}
ColorConversionCodes
CaffeConverter_Impl::get_cvt_codes(const int src_channels,
const int dst_channels) {
assert(src_channels != dst_channels);
if (dst_channels == 3) {
return src_channels == 1 ? COLOR_GRAY2BGR : COLOR_BGRA2BGR;
} else if (dst_channels == 1) {
return src_channels == 3 ? COLOR_BGR2GRAY : COLOR_BGRA2GRAY;
} else {
throw runtime_error("unsupported color code");
}
}
void CaffeConverter_Impl::preprocess(const Mat& img,
const Mat& mean,
const int num_channels,
const Size& geometry,
vector<Mat>* input_channels) {
Mat sample;
// convert color
if (img.channels() != num_channels) {
cvtColor(img, sample,
get_cvt_codes(img.channels(), num_channels));
} else {
sample = img;
}
// resize
Mat sample_resized;
resize(sample, sample_resized, geometry);
Mat sample_float;
sample_resized.convertTo(sample_float,
num_channels == 3 ? CV_32FC3 : CV_32FC1);
// subtract mean
if (mean.size().width > 0) {
Mat sample_normalized;
subtract(sample_float, mean, sample_normalized);
split(sample_normalized, *input_channels);
}
else {
split(sample_float, *input_channels);
}
}
void CaffeConverter_Impl::eval(InputArray image,
std::vector<float>& results) {
const Mat img = image.getMat();
const size_t channels = (*net_)[0]->in_data_shape()[0].depth_;
const size_t width = (*net_)[0]->in_data_shape()[0].width_;
const size_t height = (*net_)[0]->in_data_shape()[0].height_;
vector<Mat> input_channels;
vector<float> inputvec(width*height*channels);
for (size_t i = 0; i < channels; i++) {
input_channels.emplace_back(height, width, CV_32FC1,
&inputvec[width*height*i]);
}
// subtract mean from input
preprocess(img, mean_, 3, Size(width, height), &input_channels);
const vector<tiny_dnn::float_t> vec(inputvec.begin(), inputvec.end());
// perform inderence
auto result = net_->predict(vec);
// allocate output
results.clear();
results.reserve(result.size());
for (size_t i = 0; i < result.size(); i++) {
results.push_back(result[i]);
}
}
Ptr<CaffeConverter> CaffeConverter::create(const String& model_file,
const String& trained_file,
const String& mean_file) {
return makePtr<CaffeConverter_Impl>(model_file, trained_file, mean_file);
}
} // namespace dnn2
} // namespace cv
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2016, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "precomp.hpp"
//#include <tiny_cnn/tiny_cnn.h>
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2016, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/dnn_modern.hpp"
#endif
...@@ -466,7 +466,7 @@ Rect FacemarkLBFImpl::getBBox(Mat &img, const Mat_<double> shape) { ...@@ -466,7 +466,7 @@ Rect FacemarkLBFImpl::getBBox(Mat &img, const Mat_<double> shape) {
if(!faceDetector){ if(!faceDetector){
defaultFaceDetector(img, rects); defaultFaceDetector(img, rects);
}else{ }else{
faceDetector(img, rects,0); faceDetector(img, rects, faceDetectorData);
} }
if (rects.size() == 0) return Rect(-1, -1, -1, -1); if (rects.size() == 0) return Rect(-1, -1, -1, -1);
......
...@@ -55,51 +55,64 @@ using namespace cv::ximgproc; ...@@ -55,51 +55,64 @@ using namespace cv::ximgproc;
void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping) void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping)
{ {
int rows = img.rows, cols = img.cols; int rows = img.rows, cols = img.cols;
int alls = rows * cols; size_t alls = (size_t)rows * cols;
CV_Assert(img.isContinuous());
float *imgPtr = img.ptr<float>(); float *imgPtr = img.ptr<float>();
typedef pair<float,int> pairFI; typedef pair<float,int> pairFI;
pairFI *data = (pairFI *)malloc(alls*sizeof(pairFI)); std::vector<pairFI> data(alls);
// Sort all pixels of the image by ascending order of pixel value // Sort all pixels of the image by ascending order of pixel value
for(int i=0;i<alls;i++){ for (size_t i = 0; i < alls; i++)
data[i].second = i; {
data[i].first = imgPtr[i]; pairFI& d = data[i];
d.second = i;
d.first = imgPtr[i];
}
struct PixelValueOrder {
static bool compare(const pairFI &a, const pairFI &b) {
return a.first < b.first;
} }
sort(data,data+alls); };
sort(data.begin(), data.end(), PixelValueOrder::compare);
// Find lower bound and upper bound of the pixel values // Find lower bound and upper bound of the pixel values
double maxVal,minVal; double maxVal = data[alls - 1].first, minVal = data[0].first;
minMaxLoc(img,&minVal,&maxVal);
float maxRange = (float)(maxVal - minVal); const float maxRange = (float)(maxVal - minVal);
float th = 1e-5f;
float l = 0, r = maxRange*2.0f/nI; float l = 0, r = maxRange*2.0f/nI;
// Perform binary search on error bound // Perform binary search on error bound
while(r-l > th) while (r > l)
{ {
float m = (r+l)*0.5f; float m = (r + l) * 0.5f;
if (m == r || m == l)
break; // bailout on numeric accuracy limit
bool suc = true; bool suc = true;
float base = (float)minVal; float base = (float)minVal;
int cnt=0; int cnt = 0;
for(int i=0;i<alls;i++) for (size_t i = 0; i < alls; i++)
{ {
if(data[i].first>base+m) if (data[i].first > base + m)
{ {
cnt++; cnt++;
base = data[i].first; base = data[i].first;
if(cnt==nI) if (cnt == nI)
{ {
suc = false; suc = false;
break; break;
} }
} }
} }
if(suc)r=m; if (suc)
else l=m; r = m;
else
l = m;
} }
Mat retImg(img.size(),CV_32SC1); Mat retImg(img.size(),CV_32SC1);
CV_Assert(retImg.isContinuous());
int *retImgPtr = retImg.ptr<int>(); int *retImgPtr = retImg.ptr<int>();
// In the sorted list, divide pixel values into clusters according to the minimum error bound // In the sorted list, divide pixel values into clusters according to the minimum error bound
...@@ -108,23 +121,22 @@ void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping) ...@@ -108,23 +121,22 @@ void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping)
float base = (float)minVal; float base = (float)minVal;
int baseI = 0; int baseI = 0;
int cnt = 0; int cnt = 0;
for(int i=0;i<=alls;i++) for (size_t i = 0; i < alls; i++)
{ {
if(i==alls || data[i].first>base+r) if (data[i].first > base + r)
{ {
mapping[cnt] = data[(baseI+i-1)>>1].first; //median mapping[cnt] = data[(baseI+i-1)>>1].first; //median
if(i==alls)break;
cnt++; cnt++;
base = data[i].first; base = data[i].first;
baseI = i; baseI = i;
} }
retImgPtr[data[i].second] = cnt; retImgPtr[data[i].second] = cnt;
} }
// tail: i == alls
free(data); mapping[cnt] = data[(baseI+alls-1)>>1].first; // median
//end of the function //end of the function
outImg = retImg; swap(outImg, retImg);
} }
/***************************************************************/ /***************************************************************/
...@@ -134,6 +146,8 @@ void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping) ...@@ -134,6 +146,8 @@ void from32FTo32S(Mat &img, Mat &outImg, int nI, float *mapping)
void from32STo32F(Mat &img, Mat &outImg, float *mapping) void from32STo32F(Mat &img, Mat &outImg, float *mapping)
{ {
Mat retImg(img.size(),CV_32F); Mat retImg(img.size(),CV_32F);
CV_Assert(img.isContinuous());
CV_Assert(retImg.isContinuous());
int rows = img.rows, cols = img.cols, alls = rows*cols; int rows = img.rows, cols = img.cols, alls = rows*cols;
float *retImgPtr = retImg.ptr<float>(); float *retImgPtr = retImg.ptr<float>();
int *imgPtr = img.ptr<int>(); int *imgPtr = img.ptr<int>();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment