:param guide: guided image (also called as joint image) with unsigned 8-bit or floating 32-bit depth and up to 4 channels.
:param guide: guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
:param src: filtering image with unsigned 8-bit or floating 32-bit depth and up to 4 channels.
:param src: filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
:param sigmaSpatial: :math:`{\sigma}_H` parameter in the original article, it's similar to the sigma in the coordinate space into :ocv:func:`bilateralFilter`.
:param sigmaSpatial: :math:`{\sigma}_H` parameter in the original article, it's similar to the sigma in the coordinate space into :ocv:func:`bilateralFilter`.
:param sigmaColor: :math:`{\sigma}_r` parameter in the original article, it's similar to the sigma in the color space into :ocv:func:`bilateralFilter`.
:param sigmaColor: :math:`{\sigma}_r` parameter in the original article, it's similar to the sigma in the color space into :ocv:func:`bilateralFilter`.
:param mode: one form three modes ``DTF_NC``, ``DTF_RF`` and ``DTF_IC`` which corresponds to three modes for filtering 2D signals in the article.
:param mode: one form three modes ``DTF_NC``, ``DTF_RF`` and ``DTF_IC`` which corresponds to three modes for filtering 2D signals in the article.
:param joint: Joint 8-bit or floating-point, 1-channel or 3-channel image.
:param src: Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint image.
:param dst: Destination image of the same size and type as ``src`` .
:param d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from ``sigmaSpace`` .
:param sigmaColor: Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see ``sigmaSpace`` ) will be mixed together, resulting in larger areas of semi-equal color.
:param sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see ``sigmaColor`` ). When ``d>0`` , it specifies the neighborhood size regardless of ``sigmaSpace`` . Otherwise, ``d`` is proportional to ``sigmaSpace`` .
.. note:: :ocv:func:`bilateralFilter` and :ocv:func:`jointBilateralFilter` use L1 norm to compute difference between colors.
The paper is available `online <http://research.microsoft.com/en-us/um/people/kahe/eccv10/>`_.
The paper is available `online <http://research.microsoft.com/en-us/um/people/kahe/eccv10/>`_.
.. [Tomasi98] Carlo Tomasi and Roberto Manduchi, “Bilateral filtering for gray and color images,” in Computer Vision, 1998. Sixth International Conference on . IEEE, 1998, pp. 839– 846.
The paper is available `online <https://www.cs.duke.edu/~tomasi/papers/tomasi/tomasiIccv98.pdf>`_.
.. [Ziyang13] Ziyang Ma et al., "Constant Time Weighted Median Filtering for Stereo Matching and Beyond," ICCV, 2013, pp. 49 - 56.
.. [Ziyang13] Ziyang Ma et al., "Constant Time Weighted Median Filtering for Stereo Matching and Beyond," ICCV, 2013, pp. 49 - 56.