Commit 3097f395 authored by vludv's avatar vludv

Added joint bilateral filter realization.

parent 1f3336ee
...@@ -36,7 +36,7 @@ Produce domain transform filtering operation on source image. ...@@ -36,7 +36,7 @@ Produce domain transform filtering operation on source image.
.. ocv:pyfunction:: cv2.DTFilter.filter(src, dst[, dDepth]) -> None .. ocv:pyfunction:: cv2.DTFilter.filter(src, dst[, dDepth]) -> None
:param src: filtering image with unsigned 8-bit or floating 32-bit depth and up to 4 channels. :param src: filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
:param dst: destination image. :param dst: destination image.
:param dDepth: optional depth of the output image. ``dDepth`` can be set to -1, which will be equivalent to ``src.depth()``. :param dDepth: optional depth of the output image. ``dDepth`` can be set to -1, which will be equivalent to ``src.depth()``.
...@@ -49,8 +49,8 @@ If you have multiple images to filter with the same guided image then use :ocv:c ...@@ -49,8 +49,8 @@ If you have multiple images to filter with the same guided image then use :ocv:c
.. ocv:pyfunction:: cv2.dtFilter(guide, src, sigmaSpatial, sigmaColor[, mode[, numIters]]) -> None .. ocv:pyfunction:: cv2.dtFilter(guide, src, sigmaSpatial, sigmaColor[, mode[, numIters]]) -> None
:param guide: guided image (also called as joint image) with unsigned 8-bit or floating 32-bit depth and up to 4 channels. :param guide: guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
:param src: filtering image with unsigned 8-bit or floating 32-bit depth and up to 4 channels. :param src: filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
:param sigmaSpatial: :math:`{\sigma}_H` parameter in the original article, it's similar to the sigma in the coordinate space into :ocv:func:`bilateralFilter`. :param sigmaSpatial: :math:`{\sigma}_H` parameter in the original article, it's similar to the sigma in the coordinate space into :ocv:func:`bilateralFilter`.
:param sigmaColor: :math:`{\sigma}_r` parameter in the original article, it's similar to the sigma in the color space into :ocv:func:`bilateralFilter`. :param sigmaColor: :math:`{\sigma}_r` parameter in the original article, it's similar to the sigma in the color space into :ocv:func:`bilateralFilter`.
:param mode: one form three modes ``DTF_NC``, ``DTF_RF`` and ``DTF_IC`` which corresponds to three modes for filtering 2D signals in the article. :param mode: one form three modes ``DTF_NC``, ``DTF_RF`` and ``DTF_IC`` which corresponds to three modes for filtering 2D signals in the article.
...@@ -204,6 +204,33 @@ Simple one-line Adaptive Manifold Filter call. ...@@ -204,6 +204,33 @@ Simple one-line Adaptive Manifold Filter call.
.. seealso:: :ocv:func:`bilateralFilter`, :ocv:func:`dtFilter`, :ocv:func:`guidedFilter` .. seealso:: :ocv:func:`bilateralFilter`, :ocv:func:`dtFilter`, :ocv:func:`guidedFilter`
Joint Bilateral Filter
====================================
jointBilateralFilter
------------------------------------
Applies the joint bilateral filter to an image.
.. ocv:function:: void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
.. ocv:pyfunction:: cv2.jointBilateralFilter(joint, src, dst, d, sigmaColor, sigmaSpace, [, borderType]) -> None
:param joint: Joint 8-bit or floating-point, 1-channel or 3-channel image.
:param src: Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint image.
:param dst: Destination image of the same size and type as ``src`` .
:param d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from ``sigmaSpace`` .
:param sigmaColor: Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see ``sigmaSpace`` ) will be mixed together, resulting in larger areas of semi-equal color.
:param sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see ``sigmaColor`` ). When ``d>0`` , it specifies the neighborhood size regardless of ``sigmaSpace`` . Otherwise, ``d`` is proportional to ``sigmaSpace`` .
.. note:: :ocv:func:`bilateralFilter` and :ocv:func:`jointBilateralFilter` use L1 norm to compute difference between colors.
.. seealso:: :ocv:func:`bilateralFilter`, :ocv:func:`amFilter`
References References
========== ==========
...@@ -221,6 +248,9 @@ References ...@@ -221,6 +248,9 @@ References
The paper is available `online <http://research.microsoft.com/en-us/um/people/kahe/eccv10/>`_. The paper is available `online <http://research.microsoft.com/en-us/um/people/kahe/eccv10/>`_.
.. [Tomasi98] Carlo Tomasi and Roberto Manduchi, “Bilateral filtering for gray and color images,” in Computer Vision, 1998. Sixth International Conference on . IEEE, 1998, pp. 839– 846.
The paper is available `online <https://www.cs.duke.edu/~tomasi/papers/tomasi/tomasiIccv98.pdf>`_.
.. [Ziyang13] Ziyang Ma et al., "Constant Time Weighted Median Filtering for Stereo Matching and Beyond," ICCV, 2013, pp. 49 - 56. .. [Ziyang13] Ziyang Ma et al., "Constant Time Weighted Median Filtering for Stereo Matching and Beyond," ICCV, 2013, pp. 49 - 56.
......
...@@ -116,6 +116,12 @@ CV_EXPORTS_W void amFilter(InputArray joint, InputArray src, OutputArray dst, do ...@@ -116,6 +116,12 @@ CV_EXPORTS_W void amFilter(InputArray joint, InputArray src, OutputArray dst, do
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
CV_EXPORTS_W
void jointBilateralFilter(InputArray joint, InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT);
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
/*Interface for Weighted Median Filter*/ /*Interface for Weighted Median Filter*/
class CV_EXPORTS_W WeightedMedian : public Algorithm class CV_EXPORTS_W WeightedMedian : public Algorithm
{ {
......
#include "perf_precomp.hpp"
using namespace std;
using namespace std::tr1;
using namespace cv;
using namespace perf;
using namespace testing;
namespace cvtest
{
typedef tuple<double, Size, MatType, int, int> JBFTestParam;
typedef TestBaseWithParam<JBFTestParam> JointBilateralFilterTest;
PERF_TEST_P(JointBilateralFilterTest, perf,
Combine(
Values(2.0, 4.0, 6.0, 10.0),
SZ_TYPICAL,
Values(CV_8U, CV_32F),
Values(1, 3),
Values(1, 3))
)
{
JBFTestParam params = GetParam();
double sigmaS = get<0>(params);
Size sz = get<1>(params);
int depth = get<2>(params);
int jCn = get<3>(params);
int srcCn = get<4>(params);
Mat joint(sz, CV_MAKE_TYPE(depth, jCn));
Mat src(sz, CV_MAKE_TYPE(depth, srcCn));
Mat dst(sz, src.type());
cv::setNumThreads(cv::getNumberOfCPUs());
declare.in(joint, src, WARMUP_RNG).out(dst).tbb_threads(cv::getNumberOfCPUs());
RNG rnd(sigmaS + sz.height + depth + jCn + srcCn);
double sigmaC = rnd.uniform(0.0, 255.0);
TEST_CYCLE_N(1)
{
jointBilateralFilter(joint, src, dst, 0, sigmaC, sigmaS);
}
SANITY_CHECK(dst);
}
}
\ No newline at end of file
...@@ -643,7 +643,7 @@ void AdaptiveManifoldFilterN::computeClusters(Mat1b& cluster, Mat1b& cluster_min ...@@ -643,7 +643,7 @@ void AdaptiveManifoldFilterN::computeClusters(Mat1b& cluster, Mat1b& cluster_min
} }
else else
{ {
for (int i = 0; i < initVec.total(); i++) for (int i = 0; i < (int)initVec.total(); i++)
initVec(0, i) = (i % 2 == 0) ? 0.5f : -0.5f; initVec(0, i) = (i % 2 == 0) ? 0.5f : -0.5f;
} }
......
This diff is collapsed.
...@@ -883,7 +883,7 @@ namespace ...@@ -883,7 +883,7 @@ namespace
} }
else else
{ {
for (int i = 0; i < buf_.rand_vec.total(); i++) for (int i = 0; i < (int)buf_.rand_vec.total(); i++)
buf_.rand_vec(0, i) = (i % 2 == 0) ? 0.5f : -0.5f; buf_.rand_vec(0, i) = (i % 2 == 0) ? 0.5f : -0.5f;
} }
...@@ -914,10 +914,10 @@ namespace ...@@ -914,10 +914,10 @@ namespace
subtract(buf_.theta, w_ki, buf_.theta); subtract(buf_.theta, w_ki, buf_.theta);
Mat_<Point3f>& eta_minus = buf_.eta_minus[current_tree_level]; Mat_<Point3f>& eta_minus = buf_.eta_minus[current_tree_level];
calcEta(src_joint_f_, buf_.theta, cluster_minus, eta_minus, sigma_s_, df, buf_); calcEta(src_joint_f_, buf_.theta, cluster_minus, eta_minus, (float)sigma_s_, (float)df, buf_);
Mat_<Point3f>& eta_plus = buf_.eta_plus[current_tree_level]; Mat_<Point3f>& eta_plus = buf_.eta_plus[current_tree_level];
calcEta(src_joint_f_, buf_.theta, cluster_plus, eta_plus, sigma_s_, df, buf_); calcEta(src_joint_f_, buf_.theta, cluster_plus, eta_plus, (float)sigma_s_, (float)df, buf_);
// Algorithm 1, Step 5: recursively build more manifolds. // Algorithm 1, Step 5: recursively build more manifolds.
......
#include "test_precomp.hpp"
using namespace std;
using namespace std::tr1;
using namespace cv;
using namespace testing;
#ifdef _MSC_VER
# pragma warning(disable: 4512)
#endif
namespace cvtest
{
static std::string getOpenCVExtraDir()
{
return cvtest::TS::ptr()->get_data_path();
}
static void checkSimilarity(InputArray src, InputArray ref)
{
double normInf = cvtest::norm(src, ref, NORM_INF);
double normL2 = cvtest::norm(src, ref, NORM_L2) / (src.total()*src.channels());
EXPECT_LE(normInf, 1.0);
EXPECT_LE(normL2, 1.0 / 16);
}
static Mat convertTypeAndSize(Mat src, int dstType, Size dstSize)
{
Mat dst;
int srcCnNum = src.channels();
int dstCnNum = CV_MAT_CN(dstType);
if (srcCnNum == dstCnNum)
{
src.copyTo(dst);
}
else if (srcCnNum == 3 && dstCnNum == 1)
{
cvtColor(src, dst, COLOR_BGR2GRAY);
}
else if (srcCnNum == 1 && dstCnNum == 3)
{
cvtColor(src, dst, COLOR_GRAY2BGR);
}
else
{
CV_Error(Error::BadNumChannels, "Bad num channels in src");
}
dst.convertTo(dst, dstType);
resize(dst, dst, dstSize);
return dst;
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
typedef Vec<float, 1> Vec1f;
typedef Vec<uchar, 1> Vec1b;
#ifndef SQR
#define SQR(a) ((a)*(a))
#endif
template<typename T, int cn>
float normL1Sqr(const Vec<T, cn>& a, const Vec<T, cn>& b)
{
float res = 0.0f;
for (int i = 0; i < cn; i++)
res += std::abs((float)a[i] - (float)b[i]);
return res*res;
}
template<typename JointVec, typename SrcVec>
void jointBilateralFilterNaive_(InputArray joint_, InputArray src_, OutputArray dst_, int d, double sigmaColor, double sigmaSpace, int borderType)
{
CV_Assert(joint_.size() == src_.size());
CV_Assert(joint_.type() == JointVec::type && src_.type() == SrcVec::type);
typedef Vec<float, SrcVec::channels> SrcVecf;
if (sigmaColor <= 0)
sigmaColor = 1;
if (sigmaSpace <= 0)
sigmaSpace = 1;
int radius;
if (d <= 0)
radius = cvRound(sigmaSpace*1.5);
else
radius = d / 2;
radius = std::max(radius, 1);
d = 2 * radius + 1;
dst_.create(src_.size(), src_.type());
Mat_<SrcVec> dst = dst_.getMat();
Mat_<JointVec> jointExt;
Mat_<SrcVec> srcExt;
copyMakeBorder(src_, srcExt, radius, radius, radius, radius, borderType);
copyMakeBorder(joint_, jointExt, radius, radius, radius, radius, borderType);
float colorGaussCoef = (float)(-0.5 / (sigmaColor*sigmaColor));
float spaceGaussCoef = (float)(-0.5 / (sigmaSpace*sigmaSpace));
for (int i = radius; i < srcExt.rows - radius; i++)
{
for (int j = radius; j < srcExt.cols - radius; j++)
{
JointVec joint0 = jointExt(i, j);
SrcVecf sum = SrcVecf::all(0.0f);
float sumWeights = 0.0f;
for (int k = -radius; k <= radius; k++)
{
for (int l = -radius; l <= radius; l++)
{
float spatDistSqr = (float)(k*k + l*l);
if (spatDistSqr > SQR(radius)) continue;
float colorDistSqr = normL1Sqr(joint0, jointExt(i + k, j + l));
float weight = std::exp(spatDistSqr*spaceGaussCoef + colorDistSqr*colorGaussCoef);
sum += weight*SrcVecf(srcExt(i + k, j + l));
sumWeights += weight;
}
}
dst(i - radius, j - radius) = sum / sumWeights;
}
}
}
void jointBilateralFilterNaive(InputArray joint, InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
{
CV_Assert(src.size() == joint.size() && src.depth() == joint.depth());
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC3 || src.type() == CV_8UC1 || src.type() == CV_8UC3);
CV_Assert(joint.type() == CV_32FC1 || joint.type() == CV_32FC3 || joint.type() == CV_8UC1 || joint.type() == CV_8UC3);
int jointType = joint.type();
int srcType = src.type();
#define JBF_naive(VecJoint, VecSrc) jointBilateralFilterNaive_<VecJoint, VecSrc>(joint, src, dst, d, sigmaColor, sigmaSpace, borderType);
if (jointType == CV_8UC1)
{
if (srcType == CV_8UC1) JBF_naive(Vec1b, Vec1b);
if (srcType == CV_8UC3) JBF_naive(Vec1b, Vec3b);
}
if (jointType == CV_8UC3)
{
if (srcType == CV_8UC1) JBF_naive(Vec3b, Vec1b);
if (srcType == CV_8UC3) JBF_naive(Vec3b, Vec3b);
}
if (jointType == CV_32FC1)
{
if (srcType == CV_32FC1) JBF_naive(Vec1f, Vec1f);
if (srcType == CV_32FC3) JBF_naive(Vec1f, Vec3f);
}
if (jointType == CV_32FC3)
{
if (srcType == CV_32FC1) JBF_naive(Vec3f, Vec1f);
if (srcType == CV_32FC3) JBF_naive(Vec3f, Vec3f);
}
#undef JBF_naive
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
typedef tuple<double, string, string, int, int, int> JBFTestParam;
typedef TestWithParam<JBFTestParam> JointBilateralFilterTest_NaiveRef;
TEST_P(JointBilateralFilterTest_NaiveRef, Accuracy)
{
JBFTestParam param = GetParam();
double sigmaS = get<0>(param);
string jointPath = get<1>(param);
string srcPath = get<2>(param);
int depth = get<3>(param);
int jCn = get<4>(param);
int srcCn = get<5>(param);
int jointType = CV_MAKE_TYPE(depth, jCn);
int srcType = CV_MAKE_TYPE(depth, srcCn);
Mat joint = imread(getOpenCVExtraDir() + jointPath);
Mat src = imread(getOpenCVExtraDir() + srcPath);
ASSERT_TRUE(!joint.empty() && !src.empty());
joint = convertTypeAndSize(joint, jointType, joint.size());
src = convertTypeAndSize(src, srcType, joint.size());
RNG rnd(cvRound(10*sigmaS) + jointType + srcType + jointPath.length() + srcPath.length() + joint.rows + joint.cols);
double sigmaC = rnd.uniform(0, 255);
Mat resNaive;
jointBilateralFilterNaive(joint, src, resNaive, 0, sigmaC, sigmaS);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat res;
jointBilateralFilter(joint, src, res, 0, sigmaC, sigmaS);
cv::setNumThreads(1);
checkSimilarity(res, resNaive);
}
INSTANTIATE_TEST_CASE_P(Set2, JointBilateralFilterTest_NaiveRef,
Combine(
Values(4.0, 6.0, 8.0),
Values("/cv/shared/airplane.png", "/cv/shared/fruits.png"),
Values("/cv/shared/airplane.png", "/cv/shared/lena.png", "/cv/shared/fruits.png"),
Values(CV_8U, CV_32F),
Values(1, 3),
Values(1, 3))
);
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
typedef tuple<double, string, int> BFTestParam;
typedef TestWithParam<BFTestParam> JointBilateralFilterTest_BilateralRef;
TEST_P(JointBilateralFilterTest_BilateralRef, Accuracy)
{
BFTestParam param = GetParam();
double sigmaS = get<0>(param);
string srcPath = get<1>(param);
int srcType = get<2>(param);
Mat src = imread(getOpenCVExtraDir() + srcPath);
ASSERT_TRUE(!src.empty());
src = convertTypeAndSize(src, srcType, src.size());
RNG rnd(cvRound(10*sigmaS) + srcPath.length() + srcType + src.rows);
double sigmaC = rnd.uniform(0.0, 255.0);
cv::setNumThreads(cv::getNumberOfCPUs());
Mat resRef;
bilateralFilter(src, resRef, 0, sigmaC, sigmaS);
Mat res, joint = src.clone();
jointBilateralFilter(joint, src, res, 0, sigmaC, sigmaS);
checkSimilarity(res, resRef);
}
INSTANTIATE_TEST_CASE_P(Set1, JointBilateralFilterTest_BilateralRef,
Combine(
Values(4.0, 6.0, 8.0),
Values("/cv/shared/pic2.png", "/cv/shared/lena.png", "cv/shared/box_in_scene.png"),
Values(CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3)
)
);
}
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment