Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
309274a4
Commit
309274a4
authored
May 24, 2015
by
cbalint13
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix doc in header.
parent
1a617614
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
87 additions
and
150 deletions
+87
-150
xfeatures2d.hpp
modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
+0
-2
daisy.cpp
modules/xfeatures2d/src/daisy.cpp
+78
-148
test_rotation_and_scale_invariance.cpp
...s/xfeatures2d/test/test_rotation_and_scale_invariance.cpp
+9
-0
No files found.
modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
View file @
309274a4
...
...
@@ -178,8 +178,6 @@ public:
@param q_radius amount of radial range division quantity
@param q_theta amount of angular range division quantity
@param q_hist amount of gradient orientations range division quantity
DAISY::ONLY_KEYS means to compute descriptors only for keypoints in the list (default) and
DAISY::COMP_FULL will compute descriptors for all pixels in the given image
@param norm choose descriptors normalization type, where
DAISY::NRM_NONE will not do any normalization (default),
DAISY::NRM_PARTIAL mean that histograms are normalized independently for L2 norm equal to 1.0,
...
...
modules/xfeatures2d/src/daisy.cpp
View file @
309274a4
...
...
@@ -50,7 +50,6 @@
#include "precomp.hpp"
#include <fstream>
#include <stdlib.h>
...
...
@@ -371,21 +370,21 @@ private:
inline
void
get_descriptor
(
int
y
,
int
x
,
float
*
&
descriptor
);
// does not use interpolation while computing the histogram.
inline
void
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
float
*
hcube
)
const
;
inline
void
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
const
float
*
hcube
)
const
;
// returns the interpolated histogram: picks either bi_get_histogram or
// ti_get_histogram depending on 'shift'
inline
void
i_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
float
*
cube
)
const
;
inline
void
i_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
const
float
*
cube
)
const
;
// records the histogram that is computed by bilinear interpolation
// regarding the shift in the spatial coordinates. hcube is the
// histogram cube for a constant smoothness level.
inline
void
bi_get_histogram
(
float
*
descriptor
,
double
y
,
double
x
,
int
shift
,
float
*
hcube
)
const
;
inline
void
bi_get_histogram
(
float
*
descriptor
,
double
y
,
double
x
,
int
shift
,
const
float
*
hcube
)
const
;
// records the histogram that is computed by trilinear interpolation
// regarding the shift in layers and spatial coordinates. hcube is the
// histogram cube for a constant smoothness level.
inline
void
ti_get_histogram
(
float
*
descriptor
,
double
y
,
double
x
,
double
shift
,
float
*
hcube
)
const
;
inline
void
ti_get_histogram
(
float
*
descriptor
,
double
y
,
double
x
,
double
shift
,
const
float
*
hcube
)
const
;
// uses interpolation, for no interpolation call ni_get_descriptor. see also get_descriptor
inline
void
i_get_descriptor
(
double
y
,
double
x
,
int
orientation
,
float
*
descriptor
)
const
;
...
...
@@ -401,8 +400,6 @@ private:
inline
int
quantize_radius
(
float
rad
)
const
;
inline
int
filter_size
(
double
sigma
);
// Return a number in the range [-0.5, 0.5] that represents the location of
// the peak of a parabola passing through the 3 evenly spaced samples. The
// center value is assumed to be greater than or equal to the other values
...
...
@@ -486,53 +483,17 @@ static void gradient( Mat im, int h, int w, Mat dy, Mat dx )
}
}
static
Mat
layered_gradient
(
Mat
data
,
int
layer_no
=
8
)
{
int
data_size
=
data
.
rows
*
data
.
cols
;
Mat
layers
(
1
,
layer_no
*
data_size
,
CV_32F
,
Scalar
(
0
)
);
float
kernel
[
5
];
gaussian_1d
(
kernel
,
5
,
0.5
f
,
0.0
f
);
Mat
Kernel
(
1
,
5
,
CV_32F
,
(
float
*
)
kernel
);
Mat
cvO
;
// smooth the data matrix
filter2D
(
data
,
cvO
,
CV_32F
,
Kernel
,
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvO
,
cvO
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
Mat
dx
(
1
,
data_size
,
CV_32F
);
Mat
dy
(
1
,
data_size
,
CV_32F
);
gradient
(
cvO
,
data
.
rows
,
data
.
cols
,
dy
,
dx
);
cvO
.
release
();
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
l
=
0
;
l
<
layer_no
;
l
++
)
{
float
angle
=
(
float
)
(
2
*
l
*
CV_PI
/
layer_no
);
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
float
*
layer_l
=
layers
.
ptr
<
float
>
(
0
)
+
l
*
data_size
;
for
(
int
index
=
0
;
index
<
data_size
;
index
++
)
{
float
value
=
kos
*
dx
.
at
<
float
>
(
index
)
+
zin
*
dy
.
at
<
float
>
(
index
);
if
(
value
>
0
)
layer_l
[
index
]
=
value
;
else
layer_l
[
index
]
=
0
;
}
}
return
layers
;
}
// data is not destroyed afterwards
static
void
layered_gradient
(
Mat
data
,
int
layer_no
,
Mat
layers
)
static
void
layered_gradient
(
Mat
data
,
Mat
&
layers
)
{
CV_Assert
(
!
layers
.
empty
()
);
CV_Assert
(
layers
.
dims
==
4
);
CV_Assert
(
data
.
rows
==
layers
.
size
[
2
]
);
CV_Assert
(
data
.
cols
==
layers
.
size
[
3
]
);
int
layer_no
=
layers
.
size
[
1
];
Mat
cvI
=
data
.
clone
()
;
Mat
cvI
;
layers
.
setTo
(
Scalar
(
0
)
);
int
data_size
=
data
.
rows
*
data
.
cols
;
...
...
@@ -540,7 +501,7 @@ static void layered_gradient( Mat data, int layer_no, Mat layers )
gaussian_1d
(
kernel
,
5
,
0.5
f
,
0.0
f
);
Mat
Kernel
(
1
,
5
,
CV_32F
,
(
float
*
)
kernel
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
,
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
filter2D
(
data
,
cvI
,
CV_32F
,
Kernel
,
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
Mat
dx
(
1
,
data_size
,
CV_32F
);
...
...
@@ -556,13 +517,13 @@ static void layered_gradient( Mat data, int layer_no, Mat layers )
float
kos
=
(
float
)
cos
(
angle
);
float
zin
=
(
float
)
sin
(
angle
);
float
*
layer_l
=
layers
.
ptr
<
float
>
(
0
)
+
l
*
data_size
;
float
*
layer_l
=
layers
.
ptr
<
float
>
(
0
,
l
)
;
for
(
int
i
ndex
=
0
;
index
<
data_size
;
index
++
)
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
float
value
=
kos
*
dx
.
at
<
float
>
(
i
ndex
)
+
zin
*
dy
.
at
<
float
>
(
index
);
if
(
value
>
0
)
layer_l
[
i
ndex
]
=
value
;
else
layer_l
[
i
ndex
]
=
0
;
float
value
=
kos
*
dx
.
at
<
float
>
(
i
)
+
zin
*
dy
.
at
<
float
>
(
i
);
if
(
value
>
0
)
layer_l
[
i
]
=
value
;
else
layer_l
[
i
]
=
0
;
}
}
}
...
...
@@ -577,6 +538,19 @@ static void point_transform_via_homography( double* H, double x, double y, doubl
v
=
kyp
/
kp
;
}
static
int
filter_size
(
double
sigma
)
{
int
fsz
=
(
int
)(
5
*
sigma
);
// kernel size must be odd
if
(
fsz
%
2
==
0
)
fsz
++
;
// kernel size cannot be smaller than 3
if
(
fsz
<
3
)
fsz
=
3
;
return
fsz
;
}
inline
void
DAISY_Impl
::
compute_grid_points
()
{
double
r_step
=
m_rad
/
(
double
)
m_rad_q_no
;
...
...
@@ -651,28 +625,23 @@ inline void DAISY_Impl::smooth_layers( Mat layers, int h, int w, int layer_numbe
{
int
i
;
float
*
layer
=
NULL
;
int
kernel_size
=
filter_size
(
sigma
);
std
::
vector
<
float
>
kernel
(
kernel_size
);
gaussian_1d
(
&
kernel
[
0
],
kernel_size
,
sigma
,
0
);
float
*
ptr
=
layers
.
ptr
<
float
>
(
0
);
#if defined _OPENMP
#pragma omp parallel for private(i, layer)
#endif
for
(
i
=
0
;
i
<
layer_number
;
i
++
)
{
layer
=
ptr
+
i
*
h
*
w
;
Mat
cvI
(
h
,
w
,
CV_32FC1
,
(
float
*
)
layer
);
Mat
cvI
(
h
,
w
,
CV_32FC1
,
(
float
*
)
layer
s
.
ptr
<
float
>
(
0
,
i
)
);
Mat
Kernel
(
1
,
kernel_size
,
CV_32FC1
,
&
kernel
[
0
]
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
,
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvI
,
cvI
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
}
}
...
...
@@ -771,13 +740,15 @@ inline void DAISY_Impl::initialize()
m_cube_size
=
m_layer_size
*
m_hist_th_q_no
;
}
m_smoothed_gradient_layers
=
Mat
(
g_cube_number
+
1
,
m_cube_size
,
CV_32F
);
// 4 dims matrix (idcube, idhist, img_y, img_x);
int
dims
[
4
]
=
{
g_cube_number
+
1
,
m_hist_th_q_no
,
m_image
.
rows
,
m_image
.
cols
};
m_smoothed_gradient_layers
=
Mat
(
4
,
dims
,
CV_32F
);
layered_gradient
(
m_image
,
m_
hist_th_q_no
,
m_
smoothed_gradient_layers
);
layered_gradient
(
m_image
,
m_smoothed_gradient_layers
);
// assuming a 0.5 image smoothness, we pull this to 1.6 as in sift
smooth_layers
(
m_smoothed_gradient_layers
,
m_image
.
rows
,
m_image
.
cols
,
m_hist_th_q_no
,
(
float
)
sqrt
(
g_sigma_init
*
g_sigma_init
-
0.25
)
);
m_hist_th_q_no
,
(
float
)
sqrt
(
g_sigma_init
*
g_sigma_init
-
0.25
f
)
);
}
...
...
@@ -791,10 +762,10 @@ inline void DAISY_Impl::compute_cube_sigmas()
m_cube_sigmas
=
Mat
(
1
,
g_cube_number
,
CV_64F
);
double
r_step
=
double
(
m_rad
)
/
m_rad_q_no
;
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
double
r_step
=
(
double
)
m_rad
/
m_rad_q_no
/
2
;
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
m_cube_sigmas
.
at
<
double
>
(
r
)
=
(
r
+
1
)
*
r_step
/
2
;
m_cube_sigmas
.
at
<
double
>
(
r
)
=
(
r
+
1
)
*
r_step
;
}
}
update_selected_cubes
();
...
...
@@ -802,9 +773,10 @@ inline void DAISY_Impl::compute_cube_sigmas()
inline
void
DAISY_Impl
::
update_selected_cubes
()
{
double
scale
=
m_rad
/
m_rad_q_no
/
2.0
;
for
(
int
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
double
seed_sigma
=
((
double
)
r
+
1
)
*
m_rad
/
m_rad_q_no
/
2.0
;
double
seed_sigma
=
((
double
)
r
+
1
)
*
scale
;
g_selected_cubes
[
r
]
=
quantize_radius
(
(
float
)
seed_sigma
);
}
}
...
...
@@ -816,17 +788,10 @@ inline int DAISY_Impl::quantize_radius( float rad ) const
if
(
rad
>=
m_cube_sigmas
.
at
<
double
>
(
g_cube_number
-
1
)
)
return
g_cube_number
-
1
;
float
dist
;
float
mindist
=
FLT_MAX
;
int
mini
=
0
;
for
(
int
c
=
0
;
c
<
g_cube_number
;
c
++
)
{
dist
=
(
float
)
fabs
(
m_cube_sigmas
.
at
<
double
>
(
c
)
-
rad
);
if
(
dist
<
mindist
)
{
mindist
=
dist
;
mini
=
c
;
}
}
return
mini
;
int
idx_min
[
2
];
minMaxIdx
(
abs
(
m_cube_sigmas
-
rad
),
NULL
,
NULL
,
idx_min
);
return
idx_min
[
1
];
}
inline
void
DAISY_Impl
::
compute_histograms
()
...
...
@@ -836,9 +801,8 @@ inline void DAISY_Impl::compute_histograms()
for
(
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
r
*
m_cube_size
;
float
*
src
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
(
r
+
1
)
*
m_cube_size
;
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
);
float
*
src
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
+
1
);
#if defined _OPENMP
#pragma omp parallel for private(y,x,ind,hist)
...
...
@@ -848,7 +812,7 @@ inline void DAISY_Impl::compute_histograms()
for
(
x
=
0
;
x
<
m_image
.
cols
;
x
++
)
{
ind
=
y
*
m_image
.
cols
+
x
;
hist
=
dst
+
ind
*
m_hist_th_q_no
;
hist
=
dst
+
m_hist_th_q_no
*
ind
;
compute_histogram
(
src
,
y
,
x
,
hist
);
}
}
...
...
@@ -859,7 +823,7 @@ inline void DAISY_Impl::normalize_histograms()
{
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
r
*
m_cube_size
;
float
*
dst
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
)
;
#if defined _OPENMP
#pragma omp parallel for
...
...
@@ -883,14 +847,9 @@ inline void DAISY_Impl::normalize_histograms()
inline
void
DAISY_Impl
::
compute_smoothed_gradient_layers
()
{
float
*
prev_cube
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
float
*
cube
=
NULL
;
double
sigma
;
for
(
int
r
=
0
;
r
<
g_cube_number
;
r
++
)
{
cube
=
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
)
+
(
r
+
1
)
*
m_cube_size
;
// incremental smoothing
if
(
r
==
0
)
...
...
@@ -903,19 +862,19 @@ inline void DAISY_Impl::compute_smoothed_gradient_layers()
std
::
vector
<
float
>
kernel
(
kernel_size
);
gaussian_1d
(
&
kernel
[
0
],
kernel_size
,
(
float
)
sigma
,
0
);
#if defined _OPENMP
#pragma omp parallel for
#endif
for
(
int
th
=
0
;
th
<
m_hist_th_q_no
;
th
++
)
{
Mat
cvI
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
(
float
*
)
prev_cube
+
th
*
m_layer_size
);
Mat
cvO
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
(
float
*
)
cube
+
th
*
m_layer_size
);
Mat
cvI
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
,
th
)
);
Mat
cvO
(
m_image
.
rows
,
m_image
.
cols
,
CV_32FC1
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
+
1
,
th
)
);
Mat
Kernel
(
1
,
kernel_size
,
CV_32FC1
,
&
kernel
[
0
]
);
filter2D
(
cvI
,
cvO
,
CV_32F
,
Kernel
,
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
filter2D
(
cvO
,
cvO
,
CV_32F
,
Kernel
.
t
(),
Point
(
-
1
,
-
1
),
0
,
BORDER_REPLICATE
);
}
prev_cube
=
cube
;
}
compute_histograms
();
}
...
...
@@ -975,18 +934,6 @@ inline float DAISY_Impl::interpolate_peak(float left, float center, float right)
else
return
(
float
)
(
0.5
*
(
left
-
right
)
/
den
);
}
inline
int
DAISY_Impl
::
filter_size
(
double
sigma
)
{
int
fsz
=
(
int
)(
5
*
sigma
);
// kernel size must be odd
if
(
fsz
%
2
==
0
)
fsz
++
;
// kernel size cannot be smaller than 3
if
(
fsz
<
3
)
fsz
=
3
;
return
fsz
;
}
inline
void
DAISY_Impl
::
compute_scales
()
{
...
...
@@ -1096,13 +1043,14 @@ inline void DAISY_Impl::compute_orientations()
CV_Assert
(
!
m_image
.
empty
()
);
int
data_size
=
m_image
.
cols
*
m_image
.
rows
;
Mat
rotation_layers
=
layered_gradient
(
m_image
,
m_orientation_resolution
);
//int data_size = m_image.cols * m_image.rows;
int
dims
[
4
]
=
{
1
,
m_orientation_resolution
,
m_image
.
rows
,
m_image
.
cols
};
Mat
rotation_layers
(
4
,
dims
,
CV_32F
);
layered_gradient
(
m_image
,
rotation_layers
);
m_orientation_map
=
Mat
(
m_image
.
cols
,
m_image
.
rows
,
CV_16U
,
Scalar
(
0
));
int
ori
,
max_ind
;
int
ind
;
float
max_val
;
int
next
,
prev
;
...
...
@@ -1119,7 +1067,7 @@ inline void DAISY_Impl::compute_orientations()
for
(
int
scale
=
0
;
scale
<
g_scale_en
;
scale
++
)
{
sigma_new
=
(
float
)(
pow
(
g_sigma_step
,
scale
)
*
m_rad
/
3.0
);
sigma_new
=
(
float
)(
pow
(
g_sigma_step
,
scale
)
*
m_rad
/
3.0
f
);
sigma_inc
=
sqrt
(
sigma_new
*
sigma_new
-
sigma_prev
*
sigma_prev
);
sigma_prev
=
sigma_new
;
...
...
@@ -1131,14 +1079,12 @@ inline void DAISY_Impl::compute_orientations()
for
(
x
=
0
;
x
<
m_image
.
cols
;
x
++
)
{
in
d
=
y
*
m_image
.
cols
+
x
;
in
t
ind
=
y
*
m_image
.
cols
+
x
;
if
(
m_scale_invariant
&&
m_scale_map
.
at
<
float
>
(
y
,
x
)
!=
scale
)
continue
;
for
(
ori
=
0
;
ori
<
m_orientation_resolution
;
ori
++
)
{
hist
.
at
<
float
>
(
ori
)
=
rotation_layers
.
at
<
float
>
(
ori
*
data_size
+
ind
);
}
//hist.at<float>(ori) = rotation_layers.ptr<float>(0, ori, y, x);
//hist.at<float>(ori) = rotation_layers.at<float>(ori*data_size+ind);
for
(
kk
=
0
;
kk
<
6
;
kk
++
)
smooth_histogram
(
hist
,
m_orientation_resolution
);
...
...
@@ -1194,7 +1140,7 @@ inline void DAISY_Impl::compute_histogram( float* hcube, int y, int x, float* hi
for
(
int
h
=
0
;
h
<
m_hist_th_q_no
;
h
++
)
histogram
[
h
]
=
*
(
spatial_shift
+
h
*
data_size
);
}
inline
void
DAISY_Impl
::
i_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
float
*
cube
)
const
inline
void
DAISY_Impl
::
i_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
const
float
*
cube
)
const
{
int
ishift
=
(
int
)
shift
;
double
fshift
=
shift
-
ishift
;
...
...
@@ -1203,7 +1149,7 @@ inline void DAISY_Impl::i_get_histogram( float* histogram, double y, double x, d
else
ti_get_histogram
(
histogram
,
y
,
x
,
shift
,
cube
);
}
inline
void
DAISY_Impl
::
bi_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
int
shift
,
float
*
hcube
)
const
inline
void
DAISY_Impl
::
bi_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
int
shift
,
const
float
*
hcube
)
const
{
int
mnx
=
int
(
x
);
int
mny
=
int
(
y
);
...
...
@@ -1217,10 +1163,10 @@ inline void DAISY_Impl::bi_get_histogram( float* histogram, double y, double x,
int
ind
=
mny
*
m_image
.
cols
+
mnx
;
// A C --> pixel positions
// B D
float
*
A
=
hcube
+
ind
*
m_hist_th_q_no
;
float
*
B
=
A
+
m_image
.
cols
*
m_hist_th_q_no
;
float
*
C
=
A
+
m_hist_th_q_no
;
float
*
D
=
A
+
(
m_image
.
cols
+
1
)
*
m_hist_th_q_no
;
const
float
*
A
=
hcube
+
ind
*
m_hist_th_q_no
;
const
float
*
B
=
A
+
m_image
.
cols
*
m_hist_th_q_no
;
const
float
*
C
=
A
+
m_hist_th_q_no
;
const
float
*
D
=
A
+
(
m_image
.
cols
+
1
)
*
m_hist_th_q_no
;
double
alpha
=
mnx
+
1
-
x
;
double
beta
=
mny
+
1
-
y
;
...
...
@@ -1250,7 +1196,7 @@ inline void DAISY_Impl::bi_get_histogram( float* histogram, double y, double x,
}
}
inline
void
DAISY_Impl
::
ti_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
float
*
hcube
)
const
inline
void
DAISY_Impl
::
ti_get_histogram
(
float
*
histogram
,
double
y
,
double
x
,
double
shift
,
const
float
*
hcube
)
const
{
int
ishift
=
int
(
shift
);
double
layer_alpha
=
shift
-
ishift
;
...
...
@@ -1263,13 +1209,13 @@ inline void DAISY_Impl::ti_get_histogram( float* histogram, double y, double x,
histogram
[
m_hist_th_q_no
-
1
]
=
(
float
)
((
1
-
layer_alpha
)
*
thist
[
m_hist_th_q_no
-
1
]
+
layer_alpha
*
thist
[
0
]);
}
inline
void
DAISY_Impl
::
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
float
*
hcube
)
const
inline
void
DAISY_Impl
::
ni_get_histogram
(
float
*
histogram
,
int
y
,
int
x
,
int
shift
,
const
float
*
hcube
)
const
{
if
(
!
Point
(
x
,
y
).
inside
(
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
return
;
float
*
hptr
=
hcube
+
(
y
*
m_image
.
cols
+
x
)
*
m_hist_th_q_no
;
const
float
*
hptr
=
hcube
+
(
y
*
m_image
.
cols
+
x
)
*
m_hist_th_q_no
;
for
(
int
h
=
0
;
h
<
m_hist_th_q_no
;
h
++
)
{
...
...
@@ -1315,8 +1261,7 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
double
shift
=
m_orientation_shift_table
[
orientation
];
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
i_get_histogram
(
descriptor
,
y
,
x
,
shift
,
ptr
+
g_selected_cubes
[
0
]
*
m_cube_size
);
i_get_histogram
(
descriptor
,
y
,
x
,
shift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
g_selected_cubes
[
0
]
)
);
int
r
,
rdt
,
region
;
double
yy
,
xx
;
...
...
@@ -1337,8 +1282,8 @@ inline void DAISY_Impl::i_get_descriptor( double y, double x, int orientation, f
Rect
(
0
,
0
,
m_image
.
cols
-
1
,
m_image
.
rows
-
1
)
)
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
i_get_histogram
(
histogram
,
yy
,
xx
,
shift
,
ptr
+
g_selected_cubes
[
r
]
*
m_cube_size
);
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
i_get_histogram
(
histogram
,
yy
,
xx
,
shift
,
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
r
)
);
}
}
}
...
...
@@ -1366,8 +1311,7 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int
ix
=
(
int
)
x
;
if
(
x
-
ix
>
0.5
)
ix
++
;
// center
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
ni_get_histogram
(
descriptor
,
iy
,
ix
,
ishift
,
ptr
+
g_selected_cubes
[
0
]
*
m_cube_size
);
ni_get_histogram
(
descriptor
,
iy
,
ix
,
ishift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
g_selected_cubes
[
0
])
);
double
yy
,
xx
;
float
*
histogram
=
0
;
...
...
@@ -1389,7 +1333,7 @@ inline void DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
ni_get_histogram
(
histogram
,
iy
,
ix
,
ishift
,
ptr
+
g_selected_cubes
[
r
]
*
m_cube_size
);
ni_get_histogram
(
histogram
,
iy
,
ix
,
ishift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
g_selected_cubes
[
r
])
);
}
}
}
...
...
@@ -1435,8 +1379,7 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
hradius
[
0
]
=
quantize_radius
(
(
float
)
radius
);
double
shift
=
m_orientation_shift_table
[
orientation
];
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
i_get_histogram
(
descriptor
,
hy
,
hx
,
shift
,
ptr
+
hradius
[
0
]
*
m_cube_size
);
i_get_histogram
(
descriptor
,
hy
,
hx
,
shift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
hradius
[
0
])
);
double
gy
,
gx
;
int
r
,
rdt
,
th
,
region
;
...
...
@@ -1465,7 +1408,7 @@ inline bool DAISY_Impl::i_get_descriptor( double y, double x, int orientation, d
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
i_get_histogram
(
histogram
,
hy
,
hx
,
shift
,
ptr
+
hradius
[
r
]
*
m_cube_size
);
i_get_histogram
(
histogram
,
hy
,
hx
,
shift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
hradius
[
r
])
);
}
}
return
true
;
...
...
@@ -1507,8 +1450,7 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
int
r
,
rdt
,
th
,
region
;
double
gy
,
gx
;
float
*
histogram
=
0
;
float
*
ptr
=
(
float
*
)
m_smoothed_gradient_layers
.
ptr
<
float
>
(
0
);
ni_get_histogram
(
descriptor
,
ihy
,
ihx
,
ishift
,
ptr
+
hradius
[
0
]
*
m_cube_size
);
ni_get_histogram
(
descriptor
,
ihy
,
ihx
,
ishift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
hradius
[
0
])
);
for
(
r
=
0
;
r
<
m_rad_q_no
;
r
++
)
{
rdt
=
r
*
m_th_q_no
+
1
;
...
...
@@ -1536,7 +1478,7 @@ inline bool DAISY_Impl::ni_get_descriptor( double y, double x, int orientation,
)
continue
;
histogram
=
descriptor
+
region
*
m_hist_th_q_no
;
ni_get_histogram
(
histogram
,
ihy
,
ihx
,
ishift
,
ptr
+
hradius
[
r
]
*
m_cube_size
);
ni_get_histogram
(
histogram
,
ihy
,
ihx
,
ishift
,
m_smoothed_gradient_layers
.
ptr
<
float
>
(
hradius
[
r
])
);
}
}
return
true
;
...
...
@@ -1706,25 +1648,13 @@ DAISY_Impl::DAISY_Impl( float _radius, int _q_radius, int _q_theta, int _q_hist,
m_nrm_type
(
_norm
),
m_disable_interpolation
(
_interpolation
),
m_use_orientation
(
_use_orientation
)
{
m_image
=
0
;
m_descriptor_size
=
0
;
m_grid_point_number
=
0
;
m_grid_points
.
release
();
m_dense_descriptors
.
release
();
m_smoothed_gradient_layers
.
release
();
m_oriented_grid_points
.
release
();
m_scale_invariant
=
false
;
m_rotation_invariant
=
false
;
m_scale_map
.
release
();
m_orientation_map
.
release
();
m_orientation_resolution
=
36
;
m_cube_sigmas
.
release
();
m_cube_size
=
0
;
m_layer_size
=
0
;
...
...
modules/xfeatures2d/test/test_rotation_and_scale_invariance.cpp
View file @
309274a4
...
...
@@ -660,6 +660,15 @@ TEST(Features2d_RotationInvariance_Descriptor_LATCH, regression)
test
.
safe_run
();
}
TEST
(
Features2d_RotationInvariance_Descriptor_DAISY
,
regression
)
{
DescriptorRotationInvarianceTest
test
(
BRISK
::
create
(),
DAISY
::
create
(
15
,
3
,
8
,
8
,
DAISY
::
NRM_NONE
,
noArray
(),
true
,
true
),
NORM_L1
,
0.79
f
);
test
.
safe_run
();
}
/*
* Detector's scale invariance check
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment