Commit 2fda95b8 authored by Alex Leontiev's avatar Alex Leontiev

The implementation of particle filtering tracker

This contribution aims to implement the sampler based on particle
filtering within a generic tracking API that opencv has. It still
remains to write the documentation.
parent 7c4aeadd
......@@ -18,7 +18,7 @@ Here is the CMake command for you:
```
$ cd <opencv_build_directory>
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib> <opencv_source_directory>
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules <opencv_source_directory>
$ make -j5
```
......@@ -27,5 +27,5 @@ modules from `opencv_contrib` repository. If you don't want all of the modules,
use CMake's `BUILD_opencv_*` options. Like in this example:
```
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib> -DBUILD_opencv_legacy=OFF <opencv_source_directory>
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -DBUILD_opencv_legacy=OFF <opencv_source_directory>
```
set(the_description "Tracking API")
ocv_define_module(tracking opencv_imgproc)
ocv_define_module(tracking opencv_imgproc opencv_optim)
......@@ -3,7 +3,7 @@ Tracker Algorithms
.. highlight:: cpp
Two algorithms will be implemented soon, the first is MIL (Multiple Instance Learning) [MIL]_ and second is Online Boosting [OLB]_.
The following algorithms are implemented at the moment.
.. [MIL] B Babenko, M-H Yang, and S Belongie, Visual Tracking with Online Multiple Instance Learning, In CVPR, 2009
......@@ -13,7 +13,8 @@ TrackerBoosting
---------------
This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm.
The classifier uses the surrounding background as negative examples in update step to avoid the drifting problem.
The classifier uses the surrounding background as negative examples in update step to avoid the drifting problem. The implementation is based on
[OLB]_.
.. ocv:class:: TrackerBoosting
......@@ -33,10 +34,39 @@ Implementation of TrackerBoosting from :ocv:class:`Tracker`::
};
TrackerBoosting::Params
-----------------------------------------------------------------------
.. ocv:struct:: TrackerBoosting::Params
List of BOOSTING parameters::
struct CV_EXPORTS Params
{
Params();
int numClassifiers; //the number of classifiers to use in a OnlineBoosting algorithm
float samplerOverlap; //search region parameters to use in a OnlineBoosting algorithm
float samplerSearchFactor; // search region parameters to use in a OnlineBoosting algorithm
int iterationInit; //the initial iterations
int featureSetNumFeatures; // #features
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
TrackerBoosting::TrackerBoosting
-----------------------------------------------------------------------
Constructor
.. ocv:function:: bool TrackerBoosting::TrackerBoosting( const TrackerBoosting::Params &parameters = TrackerBoosting::Params() )
:param parameters: BOOSTING parameters :ocv:struct:`TrackerBoosting::Params`
TrackerMIL
----------
The MIL algorithm trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking.
The MIL algorithm trains a classifier in an online manner to separate the object from the background. Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is based on [MIL]_.
Original code can be found here http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
......@@ -89,33 +119,3 @@ Constructor
.. ocv:function:: bool TrackerMIL::TrackerMIL( const TrackerMIL::Params &parameters = TrackerMIL::Params() )
:param parameters: MIL parameters :ocv:struct:`TrackerMIL::Params`
TrackerBoosting::Params
------------------
.. ocv:struct:: TrackerBoosting::Params
List of BOOSTING parameters::
struct CV_EXPORTS Params
{
Params();
int numClassifiers; //the number of classifiers to use in a OnlineBoosting algorithm
float samplerOverlap; //search region parameters to use in a OnlineBoosting algorithm
float samplerSearchFactor; // search region parameters to use in a OnlineBoosting algorithm
int iterationInit; //the initial iterations
int featureSetNumFeatures; // #features
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
TrackerBoosting::TrackerBoosting
----------------------
Constructor
.. ocv:function:: bool TrackerBoosting::TrackerBoosting( const TrackerBoosting::Params &parameters = TrackerBoosting::Params() )
:param parameters: BOOSTING parameters :ocv:struct:`TrackerBoosting::Params`
......@@ -47,6 +47,7 @@
#include "feature.hpp"
#include "onlineMIL.hpp"
#include "onlineBoosting.hpp"
#include "opencv2/optim.hpp"
#include <iostream>
/*
......@@ -796,6 +797,25 @@ class CV_EXPORTS_W TrackerSamplerCS : public TrackerSamplerAlgorithm
};
class CV_EXPORTS_W TrackerSamplerPF : public TrackerSamplerAlgorithm{
public:
struct CV_EXPORTS Params
{
Params();
int iterationNum;
int particlesNum;
double alpha;
Mat_<double> std;
};
TrackerSamplerPF(const Mat& chosenRect,const TrackerSamplerPF::Params &parameters = TrackerSamplerPF::Params());
protected:
bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
private:
Params params;
Ptr<optim::Solver> _solver;
Ptr<optim::Solver::Function> _function;
};
/************************************ Specific TrackerFeature Classes ************************************/
/**
......@@ -1015,7 +1035,6 @@ class CV_EXPORTS_W TrackerBoosting : public Tracker
Params params;
AlgorithmInfo* info() const;
};
} /* namespace cv */
#endif
#include "opencv2/optim.hpp"
#include "opencv2/core/core_c.h"
#include <algorithm>
#include <typeinfo>
#include <cmath>
#define WEIGHTED
namespace cv{
//!particle filtering class
class PFSolver : public optim::Solver{
public:
class Function : public optim::Solver::Function
{
public:
//!if parameters have no sense due to some reason (e.g. lie outside of function domain), this function "corrects" them,
//!that is brings to the function domain
virtual void correctParams(double* /*optParams*/)const{}
//!is used when there is a dependence on the number of iterations done in calc(), note that levels are counted starting from 1
virtual void setLevel(int /*level*/, int /*levelsNum*/){}
};
PFSolver();
void getOptParam(OutputArray params)const;
int iteration();
double minimize(InputOutputArray x);
void setParticlesNum(int num);
int getParticlesNum();
void setAlpha(double AlphaM);
double getAlpha();
void getParamsSTD(OutputArray std)const;
void setParamsSTD(InputArray std);
Ptr<optim::Solver::Function> getFunction() const;
void setFunction(const Ptr<Solver::Function>& f);
TermCriteria getTermCriteria() const;
void setTermCriteria(const TermCriteria& termcrit);
private:
Mat_<double> _std,_particles,_logweight;
Ptr<Solver::Function> _Function;
PFSolver::Function* _real_function;
TermCriteria _termcrit;
int _maxItNum,_iter,_particlesNum;
double _alpha;
inline void normalize(Mat_<double>& row);
RNG rng;
};
CV_EXPORTS_W Ptr<PFSolver> createPFSolver(const Ptr<optim::Solver::Function>& f=Ptr<optim::Solver::Function>(),InputArray std=Mat(),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER,5,0.0),int particlesNum=100,double alpha=0.6);
PFSolver::PFSolver(){
_Function=Ptr<Solver::Function>();
_real_function=NULL;
_std=Mat_<double>();
rng=RNG(getTickCount());
}
void PFSolver::getOptParam(OutputArray params)const{
params.create(1,_std.rows,CV_64FC1);
Mat mat(1,_std.rows,CV_64FC1);
#ifdef WEIGHTED
mat.setTo(0.0);
for(int i=0;i<_particles.rows;i++){
mat+=_particles.row(i)/exp(-_logweight(0,i));
}
_real_function->correctParams((double*)mat.data);
mat.copyTo(params);
#else
params.create(1,_std.rows,CV_64FC1);
Mat optimus=_particles.row(std::max_element(_logweight.begin(),_logweight.end())-_logweight.begin());
_real_function->correctParams(optimus.data);
optimus.copyTo(params);
#endif
}
int PFSolver::iteration(){
if(_iter>=_maxItNum){
return _maxItNum+1;
}
_real_function->setLevel(_iter+1,_maxItNum);
//perturb
for(int j=0;j<_particles.cols;j++){
double sigma=_std(0,j);
for(int i=0;i<_particles.rows;i++){
_particles(i,j)+=rng.gaussian(sigma);
}
}
//measure
for(int i=0;i<_particles.rows;i++){
_real_function->correctParams((double*)_particles.row(i).data);
_logweight(0,i)=-(_real_function->calc((double*)_particles.row(i).data));
}
//normalize
normalize(_logweight);
//replicate
Mat_<double> new_particles(_particlesNum,_std.cols);
int num_particles=0;
for(int i=0;i<_particles.rows;i++){
int num_replicons=cvFloor(new_particles.rows/exp(-_logweight(0,i)));
for(int j=0;j<num_replicons;j++,num_particles++){
_particles.row(i).copyTo(new_particles.row(num_particles));
}
}
Mat_<double> maxrow=_particles.row(std::max_element(_logweight.begin(),_logweight.end())-_logweight.begin());
for(;num_particles<new_particles.rows;num_particles++){
maxrow.copyTo(new_particles.row(num_particles));
}
if(_particles.rows!=new_particles.rows){
_particles=new_particles;
}else{
new_particles.copyTo(_particles);
}
_std=_std*_alpha;
_iter++;
return _iter;
}
double PFSolver::minimize(InputOutputArray x){
CV_Assert(_Function.empty()==false);
CV_Assert(_std.rows==1 && _std.cols>0);
Mat mat_x=x.getMat();
CV_Assert(mat_x.type()==CV_64FC1 && MIN(mat_x.rows,mat_x.cols)==1 && MAX(mat_x.rows,mat_x.cols)==_std.cols);
_iter=0;
_particles=Mat_<double>(_particlesNum,_std.cols);
if(mat_x.rows>1){
mat_x=mat_x.t();
}
for(int i=0;i<_particles.rows;i++){
mat_x.copyTo(_particles.row(i));
}
_logweight.create(1,_particles.rows);
_logweight.setTo(-log(_particles.rows));
return 0.0;
}
void PFSolver::setParticlesNum(int num){
CV_Assert(num>0);
_particlesNum=num;
}
int PFSolver::getParticlesNum(){
return _particlesNum;
}
void PFSolver::setAlpha(double AlphaM){
CV_Assert(0<AlphaM && AlphaM<=1);
_alpha=AlphaM;
}
double PFSolver::getAlpha(){
return _alpha;
}
Ptr<optim::Solver::Function> PFSolver::getFunction() const{
return _Function;
}
void PFSolver::setFunction(const Ptr<optim::Solver::Function>& f){
CV_Assert(f.empty()==false);
Ptr<Solver::Function> non_const_f(f);
Solver::Function* f_ptr=static_cast<Solver::Function*>(non_const_f);
PFSolver::Function *pff=dynamic_cast<PFSolver::Function*>(f_ptr);
CV_Assert(pff!=NULL);
_Function=f;
_real_function=pff;
}
TermCriteria PFSolver::getTermCriteria() const{
return TermCriteria(TermCriteria::MAX_ITER,_maxItNum,0.0);
}
void PFSolver::setTermCriteria(const TermCriteria& termcrit){
CV_Assert(termcrit.type==TermCriteria::MAX_ITER && termcrit.maxCount>0);
_maxItNum=termcrit.maxCount;
}
void PFSolver::getParamsSTD(OutputArray std)const{
std.create(1,_std.cols,CV_64FC1);
_std.copyTo(std);
}
void PFSolver::setParamsSTD(InputArray std){
Mat m=std.getMat();
CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1);
int ndim=MAX(m.cols,m.rows);
if(ndim!=_std.cols){
_std=Mat_<double>(1,ndim);
}
if(m.rows==1){
m.copyTo(_std);
}else{
Mat std_t=Mat_<double>(ndim,1,(double*)_std.data);
m.copyTo(std_t);
}
}
Ptr<PFSolver> createPFSolver(const Ptr<optim::Solver::Function>& f,InputArray std,TermCriteria termcrit,int particlesNum,double alpha){
Ptr<PFSolver> ptr(new PFSolver());
if(f.empty()==false){
ptr->setFunction(f);
}
Mat mystd=std.getMat();
if(mystd.cols!=0 || mystd.rows!=0){
ptr->setParamsSTD(std);
}
ptr->setTermCriteria(termcrit);
ptr->setParticlesNum(particlesNum);
ptr->setAlpha(alpha);
return ptr;
}
void PFSolver::normalize(Mat_<double>& row){
double logsum=0.0;
double max=*(std::max_element(row.begin(),row.end()));
row-=max;
for(int i=0;i<row.cols;i++){
logsum+=exp(row(0,i));
}
logsum=log(logsum);
row-=logsum;
}
}
#include <cmath>
#include <opencv2/imgproc/imgproc_c.h>
#define CLIP(x,a,b) MIN(MAX((x),(a)),(b))
#define HIST_SIZE 50
namespace cv{
class TrackingFunctionPF : public PFSolver::Function{
public:
TrackingFunctionPF(const Mat& chosenRect);
void update(const Mat& image);
double calc(const double* x) const;
void correctParams(double* pt)const;
private:
Mat _image;
static inline Rect rectFromRow(const double* row);
const int _nh,_ns,_nv;
class TrackingHistogram{
public:
TrackingHistogram(const Mat& img,int nh,int ns,int nv);
double dist(const TrackingHistogram& hist)const;
private:
Mat_<double> HShist, Vhist;
};
TrackingHistogram _origHist;
};
TrackingFunctionPF::TrackingHistogram::TrackingHistogram(const Mat& img,int nh,int ns,int nv){
Mat hsv;
img.convertTo(hsv,CV_32F,1.0/255.0);
cvtColor(hsv,hsv,CV_BGR2HSV);
HShist=Mat_<double>(nh,ns,0.0);
Vhist=Mat_<double>(1,nv,0.0);
for(int i=0;i<img.rows;i++){
for(int j=0;j<img.cols;j++){
const Vec3f& pt=hsv.at<Vec3f>(i,j);
if(pt.val[1]>0.1 && pt.val[2]>0.2){
HShist(MIN(nh-1,(int)(nh*pt.val[0]/360.0)),MIN(ns-1,(int)(ns*pt.val[1])))++;
}else{
Vhist(0,MIN(nv-1,(int)(nv*pt.val[2])))++;
}
}}
double total=*(sum(HShist)+sum(Vhist)).val;
HShist/=total;
Vhist/=total;
}
double TrackingFunctionPF::TrackingHistogram::dist(const TrackingHistogram& hist)const{
double res=1.0;
for(int i=0;i<HShist.rows;i++){
for(int j=0;j<HShist.cols;j++){
res-=sqrt(HShist(i,j)*hist.HShist(i,j));
}}
for(int j=0;j<Vhist.cols;j++){
res-=sqrt(Vhist(0,j)*hist.Vhist(0,j));
}
return sqrt(res);
}
double TrackingFunctionPF::calc(const double* x) const{
Rect rect=rectFromRow(x);
if(rect.area()==0){
return 2.0;
}
return _origHist.dist(TrackingHistogram(_image(rect),_nh,_ns,_nv));
}
TrackingFunctionPF::TrackingFunctionPF(const Mat& chosenRect):_nh(HIST_SIZE),_ns(HIST_SIZE),_nv(HIST_SIZE),_origHist(chosenRect,_nh,_ns,_nv){
}
void TrackingFunctionPF::update(const Mat& image){
_image=image;
TrackingHistogram hist(image,_nh,_ns,_nv);
}
void TrackingFunctionPF::correctParams(double* pt)const{
pt[0]=CLIP(pt[0],0.0,_image.cols+0.9);
pt[1]=CLIP(pt[1],0.0,_image.rows+0.9);
pt[2]=CLIP(pt[2],0.0,_image.cols+0.9);
pt[3]=CLIP(pt[3],0.0,_image.rows+0.9);
if(pt[0]>pt[2]){
double tmp=pt[0];
pt[0]=pt[2];
pt[2]=tmp;
}
if(pt[1]>pt[3]){
double tmp=pt[1];
pt[1]=pt[3];
pt[3]=tmp;
}
}
Rect TrackingFunctionPF::rectFromRow(const double* row){
return Rect(Point_<int>((int)row[0],(int)row[1]),Point_<int>((int)row[2],(int)row[3]));
}
}
......@@ -41,6 +41,8 @@
#include "precomp.hpp"
#include <time.h>
#include "PFSolver.hpp"
#include "TrackingFunctionPF.hpp"
#ifdef _WIN32
#define TIME( arg ) (((double) clock()) / CLOCKS_PER_SEC)
......@@ -379,4 +381,34 @@ std::vector<Mat> TrackerSamplerCS::patchesRegularScan( const Mat& image, Rect tr
return sample;
}
TrackerSamplerPF::Params::Params(){
iterationNum=20;
particlesNum=100;
alpha=0.9;
std=(Mat_<double>(1,4)<<15.0,15.0,15.0,15.0);
}
TrackerSamplerPF::TrackerSamplerPF(const Mat& chosenRect,const TrackerSamplerPF::Params &parameters):
params( parameters ),_function(new TrackingFunctionPF(chosenRect)){
className="PF";
_solver=createPFSolver(_function,parameters.std,TermCriteria(TermCriteria::MAX_ITER,parameters.iterationNum,0.0),
parameters.particlesNum,parameters.alpha);
}
bool TrackerSamplerPF::samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ){
Ptr<TrackerTargetState> ptr;
Mat_<double> _last_guess=(Mat_<double>(1,4)<<(double)boundingBox.x,(double)boundingBox.y,
(double)boundingBox.x+boundingBox.width,(double)boundingBox.y+boundingBox.height);
PFSolver* promoted_solver=dynamic_cast<PFSolver*>(static_cast<optim::Solver*>(_solver));
promoted_solver->setParamsSTD(params.std);
promoted_solver->minimize(_last_guess);
dynamic_cast<TrackingFunctionPF*>(static_cast<optim::Solver::Function*>(promoted_solver->getFunction()))->update(image);
while(promoted_solver->iteration() <= promoted_solver->getTermCriteria().maxCount);
promoted_solver->getOptParam(_last_guess);
Rect res=Rect(Point_<int>((int)_last_guess(0,0),(int)_last_guess(0,1)),Point_<int>((int)_last_guess(0,2),(int)_last_guess(0,3)));
sample.clear();
sample.push_back(image(res));
return true;
}
} /* namespace cv */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment