Commit 2c8c4ddf authored by dmitriy.anisimov's avatar dmitriy.anisimov

added benchmark for ar_hmdb

parent 1d6a0e47
set(the_description "datasets framework")
ocv_define_module(datasets opencv_core opencv_face)
ocv_define_module(datasets opencv_core opencv_face opencv_ml opencv_flann)
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267) # flann, Win64
......@@ -14,3 +14,16 @@ _`"HMDB: A Large Human Motion Database"`: http://serre-lab.clps.brown.edu/resour
3. To load data run: ./opencv/build/bin/example_datasets_ar_hmdb -p=/home/user/path_to_unpacked_folders/
Benchmark
"""""""""
For this dataset was implemented benchmark, which gives accuracy: 0.107407 (using precomputed HOG/HOF "STIP" features from site, averaging for 3 splits)
To run this benchmark execute:
.. code-block:: bash
./opencv/build/bin/example_datasets_ar_hmdb_benchmark -p=/home/user/path_to_unpacked_folders/
(precomputed features should be unpacked in the same folder: /home/user/path_to_unpacked_folders/hmdb51_org_stips/)
......@@ -14,8 +14,14 @@ _`"Labeled Faces in the Wild"`: http://vis-www.cs.umass.edu/lfw/
3. To load data run: ./opencv/build/bin/example_datasets_fr_lfw -p=/home/user/path_to_unpacked_folder/lfw2/
.. note:: Benchmark
Benchmark
"""""""""
- For this dataset was implemented benchmark, which gives accuracy: 0.623833 +- 0.005223 (train split: pairsDevTrain.txt, dataset: lfwa)
- To run this benchmark execute: ./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/
For this dataset was implemented benchmark, which gives accuracy: 0.623833 +- 0.005223 (train split: pairsDevTrain.txt, dataset: lfwa)
To run this benchmark execute:
.. code-block:: bash
./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/datasets/ar_hmdb.hpp"
#include "opencv2/datasets/util.hpp"
#include <opencv2/core.hpp>
#include <opencv2/flann.hpp>
#include <opencv2/ml.hpp>
#include <cstdio>
#include <string>
#include <vector>
#include <fstream>
using namespace std;
using namespace cv;
using namespace cv::datasets;
using namespace cv::flann;
using namespace cv::ml;
unsigned int getNumFiles(vector< Ptr<Object> > &curr);
unsigned int getNumFiles(vector< Ptr<Object> > &curr)
{
unsigned int numFiles = 0;
for (unsigned int i=0; i<curr.size(); ++i)
{
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
vector<string> &videoNames = example->videoNames;
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
{
numFiles++;
}
}
return numFiles;
}
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels);
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels)
{
const unsigned int descriptorNum = 162;
Mat1f sample(1, descriptorNum);
Mat1i nresps(1, 1);
Mat1f dists(1, 1);
unsigned int numFiles = 0;
for (unsigned int i=0; i<curr.size(); ++i)
{
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
vector<string> &videoNames = example->videoNames;
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
{
string featuresFile = *it + ".txt";
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + featuresFile;
ifstream infile(featuresFullPath.c_str());
string line;
// skip header
for (unsigned int j=0; j<3; ++j)
{
getline(infile, line);
}
while (getline(infile, line))
{
// 7 skip, hog+hof: 72+90 read
vector<string> elems;
split(line, elems, '\t');
for (unsigned int j=0; j<descriptorNum; ++j)
{
sample(0, j) = (float)atof(elems[j+7].c_str());
}
flann_index.knnSearch(sample, nresps, dists, 1, SearchParams());
data(numFiles, nresps(0, 0)) ++;
}
labels(numFiles, 0) = i;
numFiles++;
}
}
}
int main(int argc, char *argv[])
{
const char *keys =
"{ help h usage ? | | show this message }"
"{ path p |true| path to dataset }";
CommandLineParser parser(argc, argv, keys);
string path(parser.get<string>("path"));
if (parser.has("help") || path=="true")
{
parser.printMessage();
return -1;
}
// loading dataset
Ptr<AR_hmdb> dataset = AR_hmdb::create();
dataset->load(path);
int numSplits = dataset->getNumSplits();
printf("splits number: %u\n", numSplits);
const unsigned int descriptorNum = 162;
const unsigned int clusterNum = 4000;
const unsigned int sampleNum = 5613856; // max for all 3 splits
vector<double> res;
for (int currSplit=0; currSplit<numSplits; ++currSplit)
{
Mat1f samples(sampleNum, descriptorNum);
unsigned int currSample = 0;
vector< Ptr<Object> > &curr = dataset->getTrain(currSplit);
unsigned int numTrainFiles = getNumFiles(curr);
unsigned int numFeatures = 0;
for (unsigned int i=0; i<curr.size(); ++i)
{
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
vector<string> &videoNames = example->videoNames;
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
{
string featuresFile = *it + ".txt";
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + featuresFile;
ifstream infile(featuresFullPath.c_str());
string line;
// skip header
for (unsigned int j=0; j<3; ++j)
{
getline(infile, line);
}
while (getline(infile, line))
{
numFeatures++;
if (currSample < sampleNum)
{
// 7 skip, hog+hof: 72+90 read
vector<string> elems;
split(line, elems, '\t');
for (unsigned int j=0; j<descriptorNum; ++j)
{
samples(currSample, j) = (float)atof(elems[j+7].c_str());
}
currSample++;
}
}
}
}
printf("split %u, train features number: %u, samples number: %u\n", currSplit, numFeatures, currSample);
// clustering
Mat1f centers(clusterNum, descriptorNum);
::cvflann::KMeansIndexParams kmean_params;
unsigned int resultClusters = hierarchicalClustering< L2<float> >(samples, centers, kmean_params);
if (resultClusters < clusterNum)
{
centers = centers.rowRange(Range(0, resultClusters));
}
Index flann_index(centers, KDTreeIndexParams());
printf("resulted clusters number: %u\n", resultClusters);
Mat1f trainData(numTrainFiles, resultClusters);
Mat1i trainLabels(numTrainFiles, 1);
for (unsigned int i=0; i<numTrainFiles; ++i)
{
for (unsigned int j=0; j<resultClusters; ++j)
{
trainData(i, j) = 0;
}
}
printf("calculating train histograms\n");
fillData(path, curr, flann_index, trainData, trainLabels);
printf("train svm\n");
SVM::Params params;
params.svmType = SVM::C_SVC;
params.kernelType = SVM::POLY; //SVM::RBF;
params.degree = 0.5;
params.gamma = 1;
params.coef0 = 1;
params.C = 1;
params.nu = 0.5;
params.p = 0;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01);
Ptr<SVM> svm = SVM::create(params);
svm->train(trainData, ROW_SAMPLE, trainLabels);
// prepare to predict
curr = dataset->getTest(currSplit);
unsigned int numTestFiles = getNumFiles(curr);
Mat1f testData(numTestFiles, resultClusters);
Mat1i testLabels(numTestFiles, 1); // ground true
for (unsigned int i=0; i<numTestFiles; ++i)
{
for (unsigned int j=0; j<resultClusters; ++j)
{
testData(i, j) = 0;
}
}
printf("calculating test histograms\n");
fillData(path, curr, flann_index, testData, testLabels);
printf("predicting\n");
Mat1f testPredicted(numTestFiles, 1);
svm->predict(testData, testPredicted);
unsigned int correct = 0;
for (unsigned int i=0; i<numTestFiles; ++i)
{
if ((int)testPredicted(i, 0) == testLabels(i, 0))
{
correct++;
}
}
double accuracy = 1.0*correct/numTestFiles;
printf("correctly recognized actions: %f\n", accuracy);
res.push_back(accuracy);
}
double accuracy = 0.0;
for (unsigned int i=0; i<res.size(); ++i)
{
accuracy += res[i];
}
printf("average: %f\n", accuracy/res.size());
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment