Commit 2b788904 authored by Anguelos Nicolaou's avatar Anguelos Nicolaou

Attenpt to supress visual studio and IOS warnings

parent 53a86776
# Protobuf package required for Caffe #Protobuf package required for Caffe
unset(Protobuf_FOUND) unset(Protobuf_FOUND)
find_library(Protobuf_LIBS NAMES protobuf find_library(Protobuf_LIBS NAMES protobuf
......
...@@ -42,7 +42,7 @@ def mouseCallback(event, x, y, flags, param): ...@@ -42,7 +42,7 @@ def mouseCallback(event, x, y, flags, param):
if __name__=='__main__': if __name__=='__main__':
USEGPU=False USEGPU=False
helpStr=""" Usage: """+sys.argv[0]+""" IMAGE_FILENAME helpStr="""Usage: """+sys.argv[0]+""" IMAGE_FILENAME
Press 'q' or 'Q' exit Press 'q' or 'Q' exit
......
...@@ -67,7 +67,7 @@ protected: ...@@ -67,7 +67,7 @@ protected:
net_->Reshape(); net_->Reshape();
float* inputBuffer=net_->input_blobs()[0]->mutable_cpu_data(); float* inputBuffer=net_->input_blobs()[0]->mutable_cpu_data();
float* inputData=inputBuffer; float* inputData=inputBuffer;
for(int imgNum=0;imgNum<inputImageList.size();imgNum++){ for(size_t imgNum=0;imgNum<inputImageList.size();imgNum++){
Mat preprocessed; Mat preprocessed;
cv::Mat netInputWraped(this->inputGeometry_.height, this->inputGeometry_.width, CV_32FC1, inputData); cv::Mat netInputWraped(this->inputGeometry_.height, this->inputGeometry_.width, CV_32FC1, inputData);
this->preprocess(inputImageList[imgNum],preprocessed); this->preprocess(inputImageList[imgNum],preprocessed);
...@@ -87,11 +87,16 @@ protected: ...@@ -87,11 +87,16 @@ protected:
Size inputGeometry_; Size inputGeometry_;
const int minibatchSz_; const int minibatchSz_;
const bool gpuBackend_; const bool gpuBackend_;
Ptr<Mat> meanImage_;
bool standarize_;
std::vector<std::string> labels_;
int outputSize_; int outputSize_;
public: public:
DictNetCaffeImpl(const DictNetCaffeImpl& dn):inputGeometry_(dn.inputGeometry_),minibatchSz_(dn.minibatchSz_),
gpuBackend_(dn.gpuBackend_),outputSize_(dn.outputSize_){
//Implemented to supress Visual Studio warning
#ifdef HAVE_CAFFE
this->net_=dn.net_;
#endif
}
DictNetCaffeImpl(String modelArchFilename, String modelWeightsFilename, int maxMinibatchSz, bool useGpu) DictNetCaffeImpl(String modelArchFilename, String modelWeightsFilename, int maxMinibatchSz, bool useGpu)
:minibatchSz_(maxMinibatchSz), gpuBackend_(useGpu){ :minibatchSz_(maxMinibatchSz), gpuBackend_(useGpu){
CV_Assert(this->minibatchSz_>0); CV_Assert(this->minibatchSz_>0);
...@@ -128,9 +133,9 @@ public: ...@@ -128,9 +133,9 @@ public:
void classifyBatch(InputArrayOfArrays inputImageList, OutputArray classProbabilities){ void classifyBatch(InputArrayOfArrays inputImageList, OutputArray classProbabilities){
std::vector<Mat> allImageVector; std::vector<Mat> allImageVector;
inputImageList.getMatVector(allImageVector); inputImageList.getMatVector(allImageVector);
classProbabilities.create(Size(this->outputSize_,allImageVector.size()),CV_32F); classProbabilities.create(Size(unsigned int(this->outputSize_),allImageVector.size()),CV_32F);
Mat outputMat = classProbabilities.getMat(); Mat outputMat = classProbabilities.getMat();
for(int imgNum=0;imgNum<int(allImageVector.size());imgNum+=this->minibatchSz_){ for(size_t imgNum=0;imgNum<allImageVector.size();imgNum+=this->minibatchSz_){
int rangeEnd=imgNum+std::min<int>(allImageVector.size()-imgNum,this->minibatchSz_); int rangeEnd=imgNum+std::min<int>(allImageVector.size()-imgNum,this->minibatchSz_);
std::vector<Mat>::const_iterator from=allImageVector.begin()+imgNum; std::vector<Mat>::const_iterator from=allImageVector.begin()+imgNum;
std::vector<Mat>::const_iterator to=allImageVector.begin()+rangeEnd; std::vector<Mat>::const_iterator to=allImageVector.begin()+rangeEnd;
...@@ -250,7 +255,7 @@ public: ...@@ -250,7 +255,7 @@ public:
} }
if(component_confidences!=NULL){ if(component_confidences!=NULL){
component_confidences->resize(1); component_confidences->resize(1);
(*component_confidences)[0]=confidence; (*component_confidences)[0]=float(confidence);
} }
} }
void run(Mat& image, Mat& mask, std::string& output_text, std::vector<Rect>* component_rects=NULL, void run(Mat& image, Mat& mask, std::string& output_text, std::vector<Rect>* component_rects=NULL,
...@@ -261,13 +266,7 @@ public: ...@@ -261,13 +266,7 @@ public:
} }
std::vector<String>& getVocabulary(){ std::vector<String>& getVocabulary(){
return this->labels_; return this->labels_;
}/*
void getVocabulary(CV_OUT const std::vector<String>& voc){
voc.reshape(this->labels_.size());
for(int k =0;k<voc.size();k++){
voc[k]=this->labels_[k];
} }
}*/
}; };
Ptr<OCRHolisticWordRecognizer> OCRHolisticWordRecognizer::create(Ptr<TextImageClassifier> classifierPtr,String vocabullaryFilename ){ Ptr<OCRHolisticWordRecognizer> OCRHolisticWordRecognizer::create(Ptr<TextImageClassifier> classifierPtr,String vocabullaryFilename ){
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment