Commit 2b64abdb authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #326 from MMp131316:MatchingOperations

parents bf0c8712 12b530c6
......@@ -52,4 +52,4 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_re
22. **opencv_xphoto**: Additional photo processing algorithms: Color balance / Denoising / Inpainting.
23. **opencv_stereo**: Stereo Correspondence done with different descriptors: Census / CS-Census / MCT / BRIEF / MV / RT.
23. **opencv_stereo**: Stereo Correspondence done with different descriptors: Census / CS-Census / MCT / BRIEF / MV.
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::stereo;
using namespace perf;
typedef std::tr1::tuple<Size, MatType, MatDepth> s_bm_test_t;
typedef perf::TestBaseWithParam<s_bm_test_t> s_bm;
PERF_TEST_P( s_bm, sgm_perf,
testing::Combine(
testing::Values( cv::Size(512, 283), cv::Size(320, 240)),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_8UC1,CV_8U,CV_16S )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat right(sz, matType);
Mat out1(sz, sdepth);
Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, 16, 5);
sgbm->setBinaryKernelType(CV_DENSE_CENSUS);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.1)
.iterations(20);
TEST_CYCLE()
{
sgbm->compute(left, right, out1);
}
SANITY_CHECK(out1);
}
PERF_TEST_P( s_bm, bm_perf,
testing::Combine(
testing::Values( cv::Size(512, 383), cv::Size(320, 240) ),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_8UC1,CV_8U )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat right(sz, matType);
Mat out1(sz, sdepth);
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(16, 9);
// we set the corresponding parameters
sbm->setPreFilterCap(31);
sbm->setMinDisparity(0);
sbm->setTextureThreshold(10);
sbm->setUniquenessRatio(0);
sbm->setSpeckleWindowSize(400);
sbm->setDisp12MaxDiff(0);
sbm->setAgregationWindowSize(11);
// the user can choose between the average speckle removal algorithm or
// the classical version that was implemented in OpenCV
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
sbm->setUsePrefilter(false);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.1)
.iterations(20);
TEST_CYCLE()
{
sbm->compute(left, right, out1);
}
SANITY_CHECK(out1);
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::stereo;
using namespace perf;
typedef std::tr1::tuple<Size, MatType, MatDepth> descript_params_t;
typedef perf::TestBaseWithParam<descript_params_t> descript_params;
PERF_TEST_P( descript_params, census_sparse_descriptor,
testing::Combine(
testing::Values( TYPICAL_MAT_SIZES ),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_32SC4,CV_32S )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat out1(sz, sdepth);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.01);
TEST_CYCLE()
{
censusTransform(left,9,out1,CV_SPARSE_CENSUS);
}
SANITY_CHECK(out1);
}
PERF_TEST_P( descript_params, star_census_transform,
testing::Combine(
testing::Values( TYPICAL_MAT_SIZES ),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_32SC4,CV_32S )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat out1(sz, sdepth);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.01);
TEST_CYCLE()
{
starCensusTransform(left,9,out1);
}
SANITY_CHECK(out1);
}
PERF_TEST_P( descript_params, modified_census_transform,
testing::Combine(
testing::Values( TYPICAL_MAT_SIZES ),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_32SC4,CV_32S )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat out1(sz, sdepth);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.01);
TEST_CYCLE()
{
modifiedCensusTransform(left,9,out1,CV_MODIFIED_CENSUS_TRANSFORM);
}
SANITY_CHECK(out1);
}
PERF_TEST_P( descript_params, center_symetric_census,
testing::Combine(
testing::Values( TYPICAL_MAT_SIZES ),
testing::Values( CV_8UC1,CV_8U ),
testing::Values( CV_32SC4,CV_32S )
)
)
{
Size sz = std::tr1::get<0>(GetParam());
int matType = std::tr1::get<1>(GetParam());
int sdepth = std::tr1::get<2>(GetParam());
Mat left(sz, matType);
Mat out1(sz, sdepth);
declare.in(left, WARMUP_RNG)
.out(out1)
.time(0.01);
TEST_CYCLE()
{
symetricCensusTransform(left,7,out1,CV_CS_CENSUS);
}
SANITY_CHECK(out1);
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
CV_PERF_TEST_MAIN(stereo)
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <iostream>
#include "opencv2/ts.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include <algorithm>
#include <cmath>
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined
#endif
#endif
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::stereo;
enum { STEREO_BINARY_BM, STEREO_BINARY_SGM };
static cv::CommandLineParser parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success);
int main(int argc, char** argv)
{
string left, right;
int kernel_size = 0, number_of_disparities = 0, aggregation_window = 0, P1 = 0, P2 = 0;
float scale = 4;
int algo = STEREO_BINARY_BM;
int binary_descriptor_type = 0;
int success;
// here we extract the values that were added as arguments
// we also test to see if they are provided correcly
cv::CommandLineParser parser =
parse_argument_values(argc, argv, left, right,
kernel_size,
number_of_disparities,
aggregation_window,
P1, P2,
scale,
algo, binary_descriptor_type,success);
if (!parser.check() || !success)
{
parser.printMessage();
return 1;
}
// verify if the user inputs the correct number of parameters
Mat image1, image2;
// we read a pair of images from the disk
image1 = imread(left, CV_8UC1);
image2 = imread(right, CV_8UC1);
// verify if they are loaded correctly
if (image1.empty() || image2.empty())
{
cout << " --(!) Error reading images \n";
parser.printMessage();
return 1;
}
// we display the parsed parameters
const char *b[7] = { "CV_DENSE_CENSUS", "CV_SPARSE_CENSUS", "CV_CS_CENSUS", "CV_MODIFIED_CS_CENSUS",
"CV_MODIFIED_CENSUS_TRANSFORM", "CV_MEAN_VARIATION", "CV_STAR_KERNEL" };
cout << "Program Name: " << argv[0];
cout << "\nPath to left image " << left << " \n" << "Path to right image " << right << "\n";
cout << "\nkernel size " << kernel_size << "\n"
<< "numberOfDisparities " << number_of_disparities << "\n"
<< "aggregationWindow " << aggregation_window << "\n"
<< "scallingFactor " << scale << "\n" << "Descriptor name : " << b[binary_descriptor_type] << "\n";
Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S);
Mat imgDisparity8U2 = Mat(image1.rows, image1.cols, CV_8UC1);
imshow("Original Left image", image1);
if (algo == STEREO_BINARY_BM)
{
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(number_of_disparities, kernel_size);
// we set the corresponding parameters
sbm->setPreFilterCap(31);
sbm->setMinDisparity(0);
sbm->setTextureThreshold(10);
sbm->setUniquenessRatio(0);
sbm->setSpeckleWindowSize(400); // speckle size
sbm->setSpeckleRange(200);
sbm->setDisp12MaxDiff(0);
sbm->setScalleFactor((int)scale); // the scaling factor
sbm->setBinaryKernelType(binary_descriptor_type); // binary descriptor kernel
sbm->setAgregationWindowSize(aggregation_window);
// the user can choose between the average speckle removal algorithm or
// the classical version that was implemented in OpenCV
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
sbm->setUsePrefilter(false);
//-- calculate the disparity image
sbm->compute(image1, image2, imgDisparity8U2);
imshow("Disparity", imgDisparity8U2);
}
else if (algo == STEREO_BINARY_SGM)
{
// we set the corresponding parameters
Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, number_of_disparities, kernel_size);
// setting the penalties for sgbm
sgbm->setP1(P1);
sgbm->setP2(P2);
sgbm->setMinDisparity(0);
sgbm->setUniquenessRatio(5);
sgbm->setSpeckleWindowSize(400);
sgbm->setSpeckleRange(0);
sgbm->setDisp12MaxDiff(1);
sgbm->setBinaryKernelType(binary_descriptor_type);
sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);
sgbm->compute(image1, image2, imgDisparity16S2);
/*Alternative for scalling
imgDisparity16S2.convertTo(imgDisparity8U2, CV_8UC1, scale);
*/
double minVal; double maxVal;
minMaxLoc(imgDisparity16S2, &minVal, &maxVal);
imgDisparity16S2.convertTo(imgDisparity8U2, CV_8UC1, 255 / (maxVal - minVal));
//show the disparity image
imshow("Windowsgm", imgDisparity8U2);
}
waitKey(0);
return 0;
}
static cv::CommandLineParser parse_argument_values(int argc, char **argv, string &left, string &right, int &kernel_size, int &number_of_disparities,
int &aggregation_window, int &P1, int &P2, float &scale, int &algo, int &binary_descriptor_type, int &success)
{
static const char* keys =
"{ @left | | }"
"{ @right | | }"
"{ k kernel_size | 9 | }"
"{ d disparity | 128 | }"
"{ w aggregation_window | 9 | }"
"{ P1 | 100 | }"
"{ P2 | 1000 | }"
"{ b binary_descriptor | 4 | Index of the descriptor type:\n 0 - CV_DENSE_CENSUS,\n 1 - CV_SPARSE_CENSUS,\n 2 - CV_CS_CENSUS,\n 3 - CV_MODIFIED_CS_CENSUS,\n 4 - CV_MODIFIED_CENSUS_TRANSFORM,\n 5 - CV_MEAN_VARIATION,\n 6 - CV_STAR_KERNEL}"
"{ s scale | 1.01593 | }"
"{ a algorithm | sgm | }"
;
cv::CommandLineParser parser( argc, argv, keys );
left = parser.get<string>(0);
right = parser.get<string>(1);
kernel_size = parser.get<int>("kernel_size");
number_of_disparities = parser.get<int>("disparity");
aggregation_window = parser.get<int>("aggregation_window");
P1 = parser.get<int>("P1");
P2 = parser.get<int>("P2");
binary_descriptor_type = parser.get<int>("binary_descriptor");
scale = parser.get<float>("scale");
algo = parser.get<string>("algorithm") == "sgm" ? STEREO_BINARY_SGM : STEREO_BINARY_BM;
parser.about("\nDemo stereo matching converting L and R images into disparity images using BM and SGBM\n");
success = 1;
//TEST if the provided parameters are correct
if(binary_descriptor_type == CV_DENSE_CENSUS && kernel_size > 5)
{
cout << "For the dense census transform the maximum kernel size should be 5\n";
success = 0;
}
if((binary_descriptor_type == CV_MEAN_VARIATION || binary_descriptor_type == CV_MODIFIED_CENSUS_TRANSFORM || binary_descriptor_type == CV_STAR_KERNEL) && kernel_size != 9)
{
cout <<" For Mean variation and the modified census transform the kernel size should be equal to 9\n";
success = 0;
}
if((binary_descriptor_type == CV_CS_CENSUS || binary_descriptor_type == CV_MODIFIED_CS_CENSUS) && kernel_size > 7)
{
cout << " The kernel size should be smaller or equal to 7 for the CS census and modified center symetric census\n";
success = 0;
}
if(binary_descriptor_type == CV_SPARSE_CENSUS && kernel_size > 11)
{
cout << "The kernel size for the sparse census must be smaller or equal to 11\n";
success = 0;
}
if(number_of_disparities < 10)
{
cout << "Number of disparities should be greater than 10\n";
success = 0;
}
if(aggregation_window < 3)
{
cout << "Aggregation window should be > 3";
success = 0;
}
if(scale < 1)
{
cout << "The scale should be a positive number \n";
success = 0;
}
if(P1 != 0)
{
if(P2 / P1 < 2)
{
cout << "You should probably choose a greater P2 penalty\n";
success = 0;
}
}
else
{
cout << " Penalties should be greater than 0\n";
success = 0;
}
return parser;
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -56,4 +56,3 @@
#include <cmath>
#endif
This diff is collapsed.
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <limits.h>
using namespace cv;
using namespace cv::stereo;
using namespace std;
class CV_BlockMatchingTest : public cvtest::BaseTest
{
public:
CV_BlockMatchingTest();
~CV_BlockMatchingTest();
protected:
void run(int /* idx */);
};
CV_BlockMatchingTest::CV_BlockMatchingTest(){}
CV_BlockMatchingTest::~CV_BlockMatchingTest(){}
static double errorLevel(const Mat &ideal, Mat &actual)
{
uint8_t *date, *harta;
harta = actual.data;
date = ideal.data;
int stride, h;
stride = (int)ideal.step;
h = ideal.rows;
int error = 0;
for (int i = 0; i < ideal.rows; i++)
{
for (int j = 0; j < ideal.cols; j++)
{
if (date[i * stride + j] != 0)
if (abs(date[i * stride + j] - harta[i * stride + j]) > 2 * 16)
{
error += 1;
}
}
}
return ((double)((error * 100) * 1.0) / (stride * h));
}
void CV_BlockMatchingTest::run(int )
{
Mat image1, image2, gt;
//some test images can be found in the test data folder
//in order for the tests to build succesfully please replace
//ts->get_data_path() + "testdata/imL2l.bmp with the path from your disk
//for example if your images are on D:\\ , please write D:\\testdata\\imL2l.bmp
image1 = imread(ts->get_data_path() + "testdata/imL2l.bmp", CV_8UC1);
image2 = imread(ts->get_data_path() + "testdata/imL2.bmp", CV_8UC1);
gt = imread(ts->get_data_path() + "testdata/groundtruth.bmp", CV_8UC1);
if(image1.empty() || image2.empty() || gt.empty())
{
ts->printf(cvtest::TS::LOG, "Wrong input data \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != gt.cols || gt.rows != gt.rows)
{
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
RNG range;
//set the parameters
int binary_descriptor_type = range.uniform(0,8);
int kernel_size, aggregation_window;
if(binary_descriptor_type == 0)
kernel_size = 5;
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3)
kernel_size = 7;
else if(binary_descriptor_type == 1)
kernel_size = 11;
else
kernel_size = 9;
if(binary_descriptor_type == 3)
aggregation_window = 13;
else
aggregation_window = 11;
Mat test = Mat(image1.rows, image1.cols, CV_8UC1);
Ptr<StereoBinaryBM> sbm = StereoBinaryBM::create(16, kernel_size);
//we set the corresponding parameters
sbm->setPreFilterCap(31);
sbm->setMinDisparity(0);
sbm->setTextureThreshold(10);
sbm->setUniquenessRatio(0);
sbm->setSpeckleWindowSize(400);//speckle size
sbm->setSpeckleRange(200);
sbm->setDisp12MaxDiff(0);
sbm->setScalleFactor(16);//the scaling factor
sbm->setBinaryKernelType(binary_descriptor_type);//binary descriptor kernel
sbm->setAgregationWindowSize(aggregation_window);
//speckle removal algorithm the user can choose between the average speckle removal algorithm
//or the classical version that was implemented in open cv
sbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM);
sbm->setUsePrefilter(false);//pre-filter or not the images prior to making the transformations
//-- calculate the disparity image
sbm->compute(image1, image2, test);
if(test.empty())
{
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
if(errorLevel(gt,test) > 20)
{
ts->printf( cvtest::TS::LOG,
"Too big error\n");
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
class CV_SGBlockMatchingTest : public cvtest::BaseTest
{
public:
CV_SGBlockMatchingTest();
~CV_SGBlockMatchingTest();
protected:
void run(int /* idx */);
};
CV_SGBlockMatchingTest::CV_SGBlockMatchingTest(){}
CV_SGBlockMatchingTest::~CV_SGBlockMatchingTest(){}
void CV_SGBlockMatchingTest::run(int )
{
Mat image1, image2, gt;
//some test images can be found in the test data folder
image1 = imread(ts->get_data_path() + "testdata/imL2l.bmp", CV_8UC1);
image2 = imread(ts->get_data_path() + "testdata/imL2.bmp", CV_8UC1);
gt = imread(ts->get_data_path() + "testdata/groundtruth.bmp", CV_8UC1);
if(image1.empty() || image2.empty() || gt.empty())
{
ts->printf(cvtest::TS::LOG, "Wrong input data \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
if(image1.rows != image2.rows || image1.cols != image2.cols || gt.cols != gt.cols || gt.rows != gt.rows)
{
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
RNG range;
//set the parameters
int binary_descriptor_type = range.uniform(0,8);
int kernel_size;
if(binary_descriptor_type == 0)
kernel_size = 5;
else if(binary_descriptor_type == 2 || binary_descriptor_type == 3)
kernel_size = 7;
else if(binary_descriptor_type == 1)
kernel_size = 11;
else
kernel_size = 9;
Mat test = Mat(image1.rows, image1.cols, CV_8UC1);
Mat imgDisparity16S2 = Mat(image1.rows, image1.cols, CV_16S);
Ptr<StereoBinarySGBM> sgbm = StereoBinarySGBM::create(0, 16, kernel_size);
//setting the penalties for sgbm
sgbm->setP1(10);
sgbm->setP2(100);
sgbm->setMinDisparity(0);
sgbm->setNumDisparities(16);//set disparity number
sgbm->setUniquenessRatio(1);
sgbm->setSpeckleWindowSize(400);
sgbm->setSpeckleRange(200);
sgbm->setDisp12MaxDiff(1);
sgbm->setBinaryKernelType(binary_descriptor_type);//set the binary descriptor
sgbm->setSpekleRemovalTechnique(CV_SPECKLE_REMOVAL_AVG_ALGORITHM); //the avg speckle removal algorithm
sgbm->setSubPixelInterpolationMethod(CV_SIMETRICV_INTERPOLATION);// the SIMETRIC V interpolation method
sgbm->compute(image1, image2, imgDisparity16S2);
double minVal; double maxVal;
minMaxLoc(imgDisparity16S2, &minVal, &maxVal);
imgDisparity16S2.convertTo(test, CV_8UC1, 255 / (maxVal - minVal));
if(test.empty())
{
ts->printf(cvtest::TS::LOG, "Wrong input / output dimension \n");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return;
}
double error = errorLevel(gt,test);
if(error > 10)
{
ts->printf( cvtest::TS::LOG,
"Too big error\n");
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
TEST(block_matching_simple_test, accuracy) { CV_BlockMatchingTest test; test.safe_run(); }
TEST(SG_block_matching_simple_test, accuracy) { CV_SGBlockMatchingTest test; test.safe_run(); }
This diff is collapsed.
......@@ -12,8 +12,6 @@
#include <iostream>
#include "opencv2/ts.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/stereo.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
......@@ -22,10 +20,9 @@
#include "opencv2/core/cvdef.h"
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include <algorithm>
#include <cmath>
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment