Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
2aea4f31
Commit
2aea4f31
authored
Jul 31, 2014
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Refactor stump training
parent
479f71ef
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
71 additions
and
84 deletions
+71
-84
icfdetector.cpp
modules/xobjdetect/src/icfdetector.cpp
+1
-1
stump.cpp
modules/xobjdetect/src/stump.cpp
+70
-83
No files found.
modules/xobjdetect/src/icfdetector.cpp
View file @
2aea4f31
...
...
@@ -71,7 +71,7 @@ void ICFDetector::train(const String& pos_path,
glob
(
pos_path
+
"/*.png"
,
pos_filenames
);
vector
<
String
>
bg_filenames
;
glob
(
bg_path
+
"/*.
pn
g"
,
bg_filenames
);
glob
(
bg_path
+
"/*.
jp
g"
,
bg_filenames
);
model_n_rows_
=
params
.
model_n_rows
;
model_n_cols_
=
params
.
model_n_cols
;
...
...
modules/xobjdetect/src/stump.cpp
View file @
2aea4f31
...
...
@@ -69,128 +69,115 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
/* Assert that data and labels have int type */
/* Assert that weights have float type */
Mat_
<
int
>
d
=
Mat_
<
int
>::
zeros
(
1
,
data
.
cols
);
const
Mat_
<
int
>&
l
=
labels
;
const
Mat_
<
float
>&
w
=
weights
;
/* Prepare labels for each feature rearranged according to sorted order */
Mat
sorted_labels
(
data
.
rows
,
data
.
cols
,
labels
.
type
());
Mat
sorted_weights
(
data
.
rows
,
data
.
cols
,
weights
.
type
());
Mat
indices
;
sortIdx
(
data
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
for
(
int
row
=
0
;
row
<
indices
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
indices
.
cols
;
++
col
)
{
sorted_labels
.
at
<
int
>
(
row
,
col
)
=
labels
.
at
<
int
>
(
0
,
indices
.
at
<
int
>
(
row
,
col
));
sorted_weights
.
at
<
float
>
(
row
,
col
)
=
weights
.
at
<
float
>
(
0
,
indices
.
at
<
int
>
(
row
,
col
));
}
}
Mat_
<
int
>
indices
(
1
,
l
.
cols
);
/* Sort feature values */
Mat
sorted_data
(
data
.
rows
,
data
.
cols
,
data
.
type
()
);
sort
(
data
,
sorted_data
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
Mat_
<
int
>
sorted_d
(
1
,
data
.
cols
);
Mat
_
<
int
>
sorted_l
(
1
,
l
.
cols
);
Mat_
<
float
>
sorted_w
(
1
,
w
.
cols
);
/* Split positive and negative weights */
Mat
pos_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat_
<
float
>
pos_c_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
Mat_
<
float
>
neg_c_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_thr
=
-
1
;
int
min_pol
=
-
1
;
float
min_pos
=
1
;
float
min_neg
=
-
1
;
float
eps
=
1.0
f
/
(
4
*
l
.
cols
);
/* For every feature */
for
(
int
row
=
0
;
row
<
data
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
data
.
cols
;
++
col
)
{
if
(
sorted_labels
.
at
<
int
>
(
row
,
col
)
==
+
1
)
{
pos_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
else
{
neg_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
}
}
d
(
0
,
col
)
=
data
.
at
<
int
>
(
row
,
col
);
/* Compute cumulative sums for fast stump error computation */
Mat
pos_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
cumsum
(
pos_weights
,
pos_cum_weights
);
cumsum
(
neg_weights
,
neg_cum_weights
);
sortIdx
(
d
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
/* Compute total weights of positive and negative samples */
float
pos_total_weight
=
pos_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
float
neg_total_weight
=
neg_cum_weights
.
at
<
float
>
(
0
,
weights
.
cols
-
1
);
for
(
int
col
=
0
;
col
<
indices
.
cols
;
++
col
)
{
int
ind
=
indices
(
0
,
col
);
sorted_d
(
0
,
col
)
=
d
(
0
,
ind
);
sorted_l
(
0
,
col
)
=
l
(
0
,
ind
);
sorted_w
(
0
,
col
)
=
w
(
0
,
ind
);
}
Mat_
<
float
>
pos_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
Mat_
<
float
>
neg_w
=
Mat_
<
float
>::
zeros
(
1
,
w
.
cols
);
for
(
int
col
=
0
;
col
<
d
.
cols
;
++
col
)
{
float
weight
=
sorted_w
(
0
,
col
);
if
(
sorted_l
(
0
,
col
)
==
+
1
)
pos_w
(
0
,
col
)
=
weight
;
else
neg_w
(
0
,
col
)
=
weight
;
}
float
eps
=
1.0
f
/
(
4
*
labels
.
cols
);
cumsum
(
pos_w
,
pos_c_w
);
cumsum
(
neg_w
,
neg_c_w
);
/* Compute minimal error */
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_col
=
-
1
;
int
min_polarity
=
0
;
float
min_pos_value
=
1
,
min_neg_value
=
-
1
;
float
pos_total_w
=
pos_c_w
(
0
,
w
.
cols
-
1
);
float
neg_total_w
=
neg_c_w
(
0
,
w
.
cols
-
1
);
for
(
int
row
=
0
;
row
<
sorted_weights
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
sorted_weights
.
cols
-
1
;
++
col
)
for
(
int
col
=
0
;
col
<
w
.
cols
-
1
;
++
col
)
{
float
err
,
h_pos
,
h_neg
;
float
pos_wrong
,
pos_right
;
float
neg_wrong
,
neg_right
;
/
/ Direct polarity
/
* Direct polarity */
float
pos_wrong
=
pos_cum_weights
.
at
<
float
>
(
row
,
col
);
float
pos_right
=
pos_total_weight
-
pos_wrong
;
pos_wrong
=
pos_c_w
(
0
,
col
);
pos_right
=
pos_total_w
-
pos_wrong
;
float
neg_right
=
neg_cum_weights
.
at
<
float
>
(
row
,
col
);
float
neg_wrong
=
neg_total_weight
-
neg_right
;
h_pos
=
(
float
)(
.5
*
log
((
pos_right
+
eps
)
/
(
pos_wrong
+
eps
)));
h_neg
=
(
float
)(
.5
*
log
((
neg_wrong
+
eps
)
/
(
neg_right
+
eps
)));
neg_right
=
neg_c_w
(
0
,
col
);
neg_wrong
=
neg_total_w
-
neg_right
;
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
h_pos
=
.5
f
*
log
((
pos_right
+
eps
)
/
(
pos_wrong
+
eps
));
h_neg
=
.5
f
*
log
((
neg_wrong
+
eps
)
/
(
neg_right
+
eps
));
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_
col
=
col
;
min_pol
arity
=
+
1
;
min_pos
_value
=
h_pos
;
min_neg
_value
=
h_neg
;
min_
thr
=
(
sorted_d
(
0
,
col
)
+
sorted_d
(
0
,
col
+
1
))
/
2
;
min_pol
=
+
1
;
min_pos
=
h_pos
;
min_neg
=
h_neg
;
}
// Opposite polarity
/* Opposite polarity */
swap
(
pos_right
,
pos_wrong
);
swap
(
neg_right
,
neg_wrong
);
h_pos
=
-
h_pos
;
h_neg
=
-
h_neg
;
err
=
sqrt
(
pos_right
*
neg_wrong
)
+
sqrt
(
pos_wrong
*
neg_right
);
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_
col
=
col
;
min_pol
arity
=
-
1
;
min_pos
_value
=
h_pos
;
min_neg
_value
=
h_neg
;
min_
thr
=
(
sorted_d
(
0
,
col
)
+
sorted_d
(
0
,
col
+
1
))
/
2
;
min_pol
=
-
1
;
min_pos
=
-
h_pos
;
min_neg
=
-
h_neg
;
}
}
}
/* Compute threshold, store found values in fields */
threshold_
=
(
sorted_data
.
at
<
int
>
(
min_row
,
min_col
)
+
sorted_data
.
at
<
int
>
(
min_row
,
min_col
+
1
)
)
/
2
;
polarity_
=
min_polarity
;
pos_value_
=
min_pos_value
;
neg_value_
=
min_neg_value
;
threshold_
=
min_thr
;
polarity_
=
min_pol
;
pos_value_
=
min_pos
;
neg_value_
=
min_neg
;
return
min_row
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment