Commit 2aea4f31 authored by Vlad Shakhuro's avatar Vlad Shakhuro

Refactor stump training

parent 479f71ef
......@@ -71,7 +71,7 @@ void ICFDetector::train(const String& pos_path,
glob(pos_path + "/*.png", pos_filenames);
vector<String> bg_filenames;
glob(bg_path + "/*.png", bg_filenames);
glob(bg_path + "/*.jpg", bg_filenames);
model_n_rows_ = params.model_n_rows;
model_n_cols_ = params.model_n_cols;
......
......@@ -69,128 +69,115 @@ int Stump::train(const Mat& data, const Mat& labels, const Mat& weights)
/* Assert that data and labels have int type */
/* Assert that weights have float type */
Mat_<int> d = Mat_<int>::zeros(1, data.cols);
const Mat_<int>& l = labels;
const Mat_<float>& w = weights;
/* Prepare labels for each feature rearranged according to sorted order */
Mat sorted_labels(data.rows, data.cols, labels.type());
Mat sorted_weights(data.rows, data.cols, weights.type());
Mat indices;
sortIdx(data, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
for( int row = 0; row < indices.rows; ++row )
{
for( int col = 0; col < indices.cols; ++col )
{
sorted_labels.at<int>(row, col) =
labels.at<int>(0, indices.at<int>(row, col));
sorted_weights.at<float>(row, col) =
weights.at<float>(0, indices.at<int>(row, col));
}
}
Mat_<int> indices(1, l.cols);
/* Sort feature values */
Mat sorted_data(data.rows, data.cols, data.type());
sort(data, sorted_data, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
Mat_<int> sorted_d(1, data.cols);
Mat_<int> sorted_l(1, l.cols);
Mat_<float> sorted_w(1, w.cols);
/* Split positive and negative weights */
Mat pos_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols,
sorted_weights.type());
Mat neg_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols,
sorted_weights.type());
Mat_<float> pos_c_w = Mat_<float>::zeros(1, w.cols);
Mat_<float> neg_c_w = Mat_<float>::zeros(1, w.cols);
float min_err = FLT_MAX;
int min_row = -1;
int min_thr = -1;
int min_pol = -1;
float min_pos = 1;
float min_neg = -1;
float eps = 1.0f / (4 * l.cols);
/* For every feature */
for( int row = 0; row < data.rows; ++row )
{
for( int col = 0; col < data.cols; ++col )
{
if( sorted_labels.at<int>(row, col) == +1 )
{
pos_weights.at<float>(row, col) =
sorted_weights.at<float>(row, col);
}
else
{
neg_weights.at<float>(row, col) =
sorted_weights.at<float>(row, col);
}
}
}
d(0, col) = data.at<int>(row, col);
/* Compute cumulative sums for fast stump error computation */
Mat pos_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols,
sorted_weights.type());
Mat neg_cum_weights = Mat::zeros(sorted_weights.rows, sorted_weights.cols,
sorted_weights.type());
cumsum(pos_weights, pos_cum_weights);
cumsum(neg_weights, neg_cum_weights);
sortIdx(d, indices, cv::SORT_EVERY_ROW | cv::SORT_ASCENDING);
/* Compute total weights of positive and negative samples */
float pos_total_weight = pos_cum_weights.at<float>(0, weights.cols - 1);
float neg_total_weight = neg_cum_weights.at<float>(0, weights.cols - 1);
for( int col = 0; col < indices.cols; ++col )
{
int ind = indices(0, col);
sorted_d(0, col) = d(0, ind);
sorted_l(0, col) = l(0, ind);
sorted_w(0, col) = w(0, ind);
}
Mat_<float> pos_w = Mat_<float>::zeros(1, w.cols);
Mat_<float> neg_w = Mat_<float>::zeros(1, w.cols);
for( int col = 0; col < d.cols; ++col )
{
float weight = sorted_w(0, col);
if( sorted_l(0, col) == +1)
pos_w(0, col) = weight;
else
neg_w(0, col) = weight;
}
float eps = 1.0f / (4 * labels.cols);
cumsum(pos_w, pos_c_w);
cumsum(neg_w, neg_c_w);
/* Compute minimal error */
float min_err = FLT_MAX;
int min_row = -1;
int min_col = -1;
int min_polarity = 0;
float min_pos_value = 1, min_neg_value = -1;
float pos_total_w = pos_c_w(0, w.cols - 1);
float neg_total_w = neg_c_w(0, w.cols - 1);
for( int row = 0; row < sorted_weights.rows; ++row )
{
for( int col = 0; col < sorted_weights.cols - 1; ++col )
for( int col = 0; col < w.cols - 1; ++col )
{
float err, h_pos, h_neg;
float pos_wrong, pos_right;
float neg_wrong, neg_right;
// Direct polarity
/* Direct polarity */
float pos_wrong = pos_cum_weights.at<float>(row, col);
float pos_right = pos_total_weight - pos_wrong;
pos_wrong = pos_c_w(0, col);
pos_right = pos_total_w - pos_wrong;
float neg_right = neg_cum_weights.at<float>(row, col);
float neg_wrong = neg_total_weight - neg_right;
h_pos = (float)(.5 * log((pos_right + eps) / (pos_wrong + eps)));
h_neg = (float)(.5 * log((neg_wrong + eps) / (neg_right + eps)));
neg_right = neg_c_w(0, col);
neg_wrong = neg_total_w - neg_right;
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right);
h_pos = .5f * log((pos_right + eps) / (pos_wrong + eps));
h_neg = .5f * log((neg_wrong + eps) / (neg_right + eps));
if( err < min_err )
{
min_err = err;
min_row = row;
min_col = col;
min_polarity = +1;
min_pos_value = h_pos;
min_neg_value = h_neg;
min_thr = (sorted_d(0, col) + sorted_d(0, col + 1)) / 2;
min_pol = +1;
min_pos = h_pos;
min_neg = h_neg;
}
// Opposite polarity
/* Opposite polarity */
swap(pos_right, pos_wrong);
swap(neg_right, neg_wrong);
h_pos = -h_pos;
h_neg = -h_neg;
err = sqrt(pos_right * neg_wrong) + sqrt(pos_wrong * neg_right);
if( err < min_err )
{
min_err = err;
min_row = row;
min_col = col;
min_polarity = -1;
min_pos_value = h_pos;
min_neg_value = h_neg;
min_thr = (sorted_d(0, col) + sorted_d(0, col + 1)) / 2;
min_pol = -1;
min_pos = -h_pos;
min_neg = -h_neg;
}
}
}
/* Compute threshold, store found values in fields */
threshold_ = ( sorted_data.at<int>(min_row, min_col) +
sorted_data.at<int>(min_row, min_col + 1) ) / 2;
polarity_ = min_polarity;
pos_value_ = min_pos_value;
neg_value_ = min_neg_value;
threshold_ = min_thr;
polarity_ = min_pol;
pos_value_ = min_pos;
neg_value_ = min_neg;
return min_row;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment