Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
2848831c
Commit
2848831c
authored
Jul 31, 2014
by
Alex Leontiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
vadim 12, 20, 22
parent
449eb346
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
66 additions
and
67 deletions
+66
-67
tld_tracker.cpp
modules/tracking/src/tld_tracker.cpp
+44
-51
tld_tracker.hpp
modules/tracking/src/tld_tracker.hpp
+2
-2
tld_utils.cpp
modules/tracking/src/tld_utils.cpp
+20
-14
No files found.
modules/tracking/src/tld_tracker.cpp
View file @
2848831c
...
...
@@ -88,14 +88,9 @@ using namespace tld;
*
* ?10. all in one class
*
* 21. precompute offset
* 16. loops limits
* 17. inner scope loops
*
* 12. not v=vector(n), but assign(n,0)
* 20. NCC using plain loops
* 21. precompute offset
* 22. vec of structs (detect and beyond)
*
*/
/* design decisions:
...
...
@@ -134,15 +129,16 @@ private:
Size
minSize
;
};
class
TrackerTLDModel
;
class
TLDDetector
{
public
:
TLDDetector
(
const
TrackerTLD
::
Params
&
params
,
Ptr
<
TrackerModel
>
model_in
)
:
model
(
model_in
),
params_
(
params
){}
~
TLDDetector
(){}
static
void
generateScanGrid
(
int
rows
,
int
cols
,
Size
initBox
,
std
::
vector
<
Rect2d
>&
res
,
bool
withScaling
=
false
);
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
Rect2d
>&
rect
,
std
::
vector
<
bool
>&
isObject
,
std
::
vector
<
bool
>&
shouldBeIntegrated
);
struct
LabeledPatch
{
Rect2d
rect
;
bool
isObject
,
shouldBeIntegrated
;
};
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
);
protected
:
friend
class
MyMouseCallbackDEBUG
;
Ptr
<
TrackerModel
>
model
;
...
...
@@ -207,8 +203,7 @@ class TrackerTLDModel : public TrackerModel{
inline
double
ensembleClassifierNum
(
const
uchar
*
data
,
int
rowstep
);
double
Sr
(
const
Mat_
<
uchar
>&
patch
);
double
Sc
(
const
Mat_
<
uchar
>&
patch
);
void
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
Rect2d
>&
box
,
const
std
::
vector
<
bool
>&
isPositive
,
const
std
::
vector
<
bool
>&
alsoIntoModel
);
void
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
);
void
integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
);
Size
getMinSize
(){
return
minSize_
;}
void
printme
(
FILE
*
port
=
stdout
);
...
...
@@ -313,8 +308,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox){
TrackerTLDModel
*
tldModel
=
((
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
model
));
data
->
frameNum
++
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
std
::
vector
<
Rect2d
>
detectorResults
;
std
::
vector
<
bool
>
isObject
,
shouldBeIntegrated
;
std
::
vector
<
TLDDetector
::
LabeledPatch
>
detectorResults
;
//best overlap around 92%
Rect2d
tmpCandid
=
boundingBox
;
...
...
@@ -323,7 +317,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox){
bool
trackerNeedsReInit
=
false
;
for
(
int
i
=
0
;
i
<
2
;
i
++
){
if
(((
i
==
0
)
&&!
(
data
->
failedLastTime
)
&&
trackerProxy
->
update
(
image
,
tmpCandid
))
||
((
i
==
1
)
&&
(
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
isObject
,
shouldBeIntegrated
)))){
((
i
==
1
)
&&
(
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
)))){
candidates
.
push_back
(
tmpCandid
);
if
(
i
==
0
){
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
...
...
@@ -380,17 +374,17 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox){
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
int
negRelabeled
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
detectorResults
.
size
();
i
++
){
if
(
isObject
[
i
]
){
expertResult
=
nExpert
(
detectorResults
[
i
]);
if
(
expertResult
!=
isObject
[
i
]
){
negRelabeled
++
;}
if
(
detectorResults
[
i
].
isObject
){
expertResult
=
nExpert
(
detectorResults
[
i
]
.
rect
);
if
(
expertResult
!=
detectorResults
[
i
].
isObject
){
negRelabeled
++
;}
}
else
{
expertResult
=
pExpert
(
detectorResults
[
i
]);
expertResult
=
pExpert
(
detectorResults
[
i
]
.
rect
);
}
shouldBeIntegrated
[
i
]
=
shouldBeIntegrated
[
i
]
||
(
isObject
[
i
]
!=
expertResult
);
isObject
[
i
]
=
expertResult
;
detectorResults
[
i
].
shouldBeIntegrated
=
detectorResults
[
i
].
shouldBeIntegrated
||
(
detectorResults
[
i
].
isObject
!=
expertResult
);
detectorResults
[
i
].
isObject
=
expertResult
;
}
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
,
isObject
,
shouldBeIntegrated
);
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
dprintf
((
"%d relabeled by nExpert
\n
"
,
negRelabeled
));
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
tldModel
->
integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
true
);
...
...
@@ -399,7 +393,7 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox){
tldModel
->
integrateAdditional
(
examplesForModel
,
examplesForEnsemble
,
false
);
}
else
{
#ifdef CLOSED_LOOP
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
,
isObject
,
shouldBeIntegrated
);
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
#endif
}
...
...
@@ -410,7 +404,7 @@ TrackerTLDModel::TrackerTLDModel(TrackerTLD::Params params,const Mat& image, con
timeStampPositiveNext
(
0
),
timeStampNegativeNext
(
0
),
params_
(
params
){
boundingBox_
=
boundingBox
;
originalVariance_
=
variance
(
image
(
boundingBox
));
std
::
vector
<
Rect2d
>
closest
(
10
)
,
scanGrid
;
std
::
vector
<
Rect2d
>
closest
,
scanGrid
;
Mat
scaledImg
,
blurredImg
,
image_blurred
;
double
scale
=
scaleAndBlur
(
image
,
cvRound
(
log
(
1.0
*
boundingBox
.
width
/
(
minSize
.
width
))
/
log
(
SCALE_STEP
)),
scaledImg
,
blurredImg
,
GaussBlurKernelSize
);
...
...
@@ -501,13 +495,10 @@ void TLDDetector::generateScanGrid(int rows,int cols,Size initBox,std::vector<Re
dprintf
((
"%d rects in res
\n
"
,(
int
)
res
.
size
()));
}
bool
TLDDetector
::
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
Rect2d
>&
rect
,
std
::
vector
<
bool
>&
isObject
,
std
::
vector
<
bool
>&
shouldBeIntegrated
){
bool
TLDDetector
::
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
){
TrackerTLDModel
*
tldModel
=
((
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
model
));
Size
initSize
=
tldModel
->
getMinSize
();
rect
.
clear
();
isObject
.
clear
();
shouldBeIntegrated
.
clear
();
patches
.
clear
();
Mat
resized_img
,
blurred_img
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
...
...
@@ -528,6 +519,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_img
.
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
){
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_img
.
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
){
LabeledPatch
labPatch
;
total
++
;
if
(
!
patchVariance
(
intImgP
,
intImgP2
,
originalVariance
,
Point
(
dx
*
i
,
dy
*
j
),
initSize
)){
continue
;
...
...
@@ -537,12 +529,14 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
}
pass
++
;
rect
.
push_back
(
Rect2d
(
dx
*
i
*
scale
,
dy
*
j
*
scale
,
initSize
.
width
*
scale
,
initSize
.
height
*
scale
)
);
labPatch
.
rect
=
Rect2d
(
dx
*
i
*
scale
,
dy
*
j
*
scale
,
initSize
.
width
*
scale
,
initSize
.
height
*
scale
);
resample
(
resized_img
,
Rect2d
(
Point
(
dx
*
i
,
dy
*
j
),
initSize
),
standardPatch
);
tmp
=
tldModel
->
Sr
(
standardPatch
);
isObject
.
push_back
(
tmp
>
THETA_NN
);
shouldBeIntegrated
.
push_back
(
abs
(
tmp
-
THETA_NN
)
<
0.1
);
if
(
!
isObject
[
isObject
.
size
()
-
1
]){
labPatch
.
isObject
=
tmp
>
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
tmp
-
THETA_NN
)
<
0.1
;
patches
.
push_back
(
labPatch
);
if
(
!
labPatch
.
isObject
){
nneg
++
;
continue
;
}
else
{
...
...
@@ -551,7 +545,7 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
tmp
=
tldModel
->
Sc
(
standardPatch
);
if
(
tmp
>
maxSc
){
maxSc
=
tmp
;
maxScRect
=
rect
[
rect
.
size
()
-
1
]
;
maxScRect
=
labPatch
.
rect
;
}
}
}
...
...
@@ -567,11 +561,11 @@ bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::v
dfprintf
((
stdout
,
"after NCC: nneg=%d npos=%d
\n
"
,
nneg
,
npos
));
#if !0
std
::
vector
<
Rect2d
>
poss
,
negs
;
for
(
int
i
=
0
;
i
<
(
int
)
rect
.
size
();
i
++
){
if
(
isObject
[
i
]
)
poss
.
push_back
(
rect
[
i
]
);
for
(
int
i
=
0
;
i
<
(
int
)
patches
.
size
();
i
++
){
if
(
patches
[
i
].
isObject
)
poss
.
push_back
(
patches
[
i
].
rect
);
else
negs
.
push_back
(
rect
[
i
]
);
negs
.
push_back
(
patches
[
i
].
rect
);
}
dfprintf
((
stdout
,
"%d pos and %d neg
\n
"
,(
int
)
poss
.
size
(),(
int
)
negs
.
size
()));
drawWithRects
(
img
,
negs
,
poss
);
...
...
@@ -606,7 +600,7 @@ bool TLDDetector::patchVariance(Mat_<double>& intImgP,Mat_<double>& intImgP2,dou
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
0.0
+
(
D
-
B
)
-
(
C
-
A
))
/
(
width
*
height
);
return
p2
-
p
*
p
;
return
((
p2
-
p
*
p
)
>
VARIANCE_THRESHOLD
*
originalVariance
)
;
}
double
TrackerTLDModel
::
ensembleClassifierNum
(
const
uchar
*
data
,
int
rowstep
){
...
...
@@ -651,14 +645,13 @@ double TrackerTLDModel::Sc(const Mat_<uchar>& patch){
return
splus
/
(
sminus
+
splus
);
}
void
TrackerTLDModel
::
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
Rect2d
>&
box
,
const
std
::
vector
<
bool
>&
isPositive
,
const
std
::
vector
<
bool
>&
alsoIntoModel
){
void
TrackerTLDModel
::
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
){
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
),
blurredPatch
(
minSize_
);
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
box
.
size
();
k
++
){
if
(
alsoIntoModel
[
k
]
){
resample
(
img
,
box
[
k
]
,
standardPatch
);
if
(
isPositive
[
k
]
){
for
(
int
k
=
0
;
k
<
(
int
)
patches
.
size
();
k
++
){
if
(
patches
[
k
].
shouldBeIntegrated
){
resample
(
img
,
patches
[
k
].
rect
,
standardPatch
);
if
(
patches
[
k
].
isObject
){
positiveIntoModel
++
;
pushIntoModel
(
standardPatch
,
true
);
}
else
{
...
...
@@ -668,18 +661,18 @@ void TrackerTLDModel::integrateRelabeled(Mat& img,Mat& imgBlurred,const std::vec
}
#ifdef CLOSED_LOOP
if
(
alsoIntoModel
[
k
]
||
(
isPositive
[
k
]
==
false
)){
if
(
patches
[
k
].
shouldBeIntegrated
||
(
patches
[
k
].
isPositive
==
false
)){
#else
if
(
alsoIntoModel
[
k
]
){
if
(
patches
[
k
].
shouldBeIntegrated
){
#endif
resample
(
imgBlurred
,
box
[
k
]
,
blurredPatch
);
if
(
isPositive
[
k
]
){
resample
(
imgBlurred
,
patches
[
k
].
rect
,
blurredPatch
);
if
(
patches
[
k
].
isObject
){
positiveIntoEnsemble
++
;
}
else
{
negativeIntoEnsemble
++
;
}
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
){
classifiers
[
i
].
integrate
(
blurredPatch
,
isPositive
[
k
]
);
classifiers
[
i
].
integrate
(
blurredPatch
,
patches
[
k
].
isObject
);
}
}
}
...
...
@@ -738,7 +731,7 @@ int Pexpert::additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std:
examplesForModel
.
clear
();
examplesForEnsemble
.
clear
();
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
std
::
vector
<
Rect2d
>
closest
(
10
)
,
scanGrid
;
std
::
vector
<
Rect2d
>
closest
,
scanGrid
;
Mat
scaledImg
,
blurredImg
;
double
scale
=
scaleAndBlur
(
img_
,
cvRound
(
log
(
1.0
*
resultBox_
.
width
/
(
initSize_
.
width
))
/
log
(
SCALE_STEP
)),
scaledImg
,
blurredImg
,
GaussBlurKernelSize
);
...
...
modules/tracking/src/tld_tracker.hpp
View file @
2848831c
...
...
@@ -99,8 +99,8 @@ public:
private
:
TLDEnsembleClassifier
(
std
::
vector
<
Vec4b
>
meas
,
int
beg
,
int
end
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>&
arr
,
int
pos
,
int
len
,
int
gridSize
);
unsigned
short
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
std
::
vector
<
unsigned
int
>
pos
,
n
eg
;
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
std
::
vector
<
Point2i
>
posAndN
eg
;
std
::
vector
<
Vec4b
>
measurements
;
};
...
...
modules/tracking/src/tld_utils.cpp
View file @
2848831c
...
...
@@ -136,7 +136,8 @@ void getClosestN(std::vector<Rect2d>& scanGrid,Rect2d bBox,int n,std::vector<Rec
res
.
assign
(
scanGrid
.
begin
(),
scanGrid
.
end
());
return
;
}
std
::
vector
<
double
>
overlaps
(
n
,
0.0
);
std
::
vector
<
double
>
overlaps
;
overlaps
.
assign
(
n
,
0.0
);
res
.
assign
(
scanGrid
.
begin
(),
scanGrid
.
begin
()
+
n
);
for
(
int
i
=
0
;
i
<
n
;
i
++
){
overlaps
[
i
]
=
overlap
(
res
[
i
],
bBox
);
...
...
@@ -183,10 +184,16 @@ double NCC(const Mat_<uchar>& patch1,const Mat_<uchar>& patch2){
CV_Assert
(
patch1
.
cols
==
patch2
.
cols
);
int
N
=
patch1
.
rows
*
patch1
.
cols
;
double
s1
=
sum
(
patch1
)(
0
),
s2
=
sum
(
patch2
)(
0
);
double
n1
=
norm
(
patch1
),
n2
=
norm
(
patch2
);
double
prod
=
patch1
.
dot
(
patch2
);
double
sq1
=
sqrt
(
std
::
max
(
0.0
,
n1
*
n1
-
s1
*
s1
/
N
)),
sq2
=
sqrt
(
std
::
max
(
0.0
,
n2
*
n2
-
s2
*
s2
/
N
));
int
s1
=
0
,
s2
=
0
,
n1
=
0
,
n2
=
0
,
prod
=
0
;
for
(
int
i
=
0
;
i
<
patch1
.
rows
;
i
++
){
for
(
int
j
=
0
;
j
<
patch1
.
cols
;
j
++
){
int
p1
=
patch1
(
i
,
j
),
p2
=
patch2
(
i
,
j
);
s1
+=
p1
;
s2
+=
p2
;
n1
+=
(
p1
*
p1
);
n2
+=
(
p2
*
p2
);
prod
+=
(
p1
*
p2
);
}
}
double
sq1
=
sqrt
(
std
::
max
(
0.0
,
n1
-
1.0
*
s1
*
s1
/
N
)),
sq2
=
sqrt
(
std
::
max
(
0.0
,
n2
-
1.0
*
s2
*
s2
/
N
));
double
ares
=
(
sq2
==
0
)
?
sq1
/
abs
(
sq1
)
:
(
prod
-
s1
*
s2
/
N
)
/
sq1
/
sq2
;
return
ares
;
}
...
...
@@ -264,29 +271,28 @@ void TLDEnsembleClassifier::stepPrefSuff(std::vector<Vec4b>& arr,int pos,int len
TLDEnsembleClassifier
::
TLDEnsembleClassifier
(
std
::
vector
<
Vec4b
>
meas
,
int
beg
,
int
end
){
int
posSize
=
1
;
for
(
int
i
=
0
,
mpc
=
end
-
beg
;
i
<
mpc
;
i
++
)
posSize
*=
2
;
pos
=
std
::
vector
<
unsigned
int
>
(
posSize
,
0
);
neg
=
std
::
vector
<
unsigned
int
>
(
posSize
,
0
);
posAndNeg
.
assign
(
posSize
,
Point2i
(
0
,
0
));
measurements
.
assign
(
meas
.
begin
()
+
beg
,
meas
.
begin
()
+
end
);
}
void
TLDEnsembleClassifier
::
integrate
(
const
Mat_
<
uchar
>&
patch
,
bool
isPositive
){
unsigned
short
int
position
=
code
(
patch
.
data
,(
int
)
patch
.
step
[
0
]);
int
position
=
code
(
patch
.
data
,(
int
)
patch
.
step
[
0
]);
if
(
isPositive
){
pos
[
position
]
++
;
pos
AndNeg
[
position
].
x
++
;
}
else
{
neg
[
position
]
++
;
posAndNeg
[
position
].
y
++
;
}
}
double
TLDEnsembleClassifier
::
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
{
unsigned
short
int
position
=
code
(
data
,
rowstep
);
double
posNum
=
(
double
)
pos
[
position
],
negNum
=
(
double
)
neg
[
position
]
;
int
position
=
code
(
data
,
rowstep
);
double
posNum
=
(
double
)
pos
AndNeg
[
position
].
x
,
negNum
=
(
double
)
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
){
return
0.0
;
}
else
{
return
posNum
/
(
posNum
+
negNum
);
}
}
unsigned
short
int
TLDEnsembleClassifier
::
code
(
const
uchar
*
data
,
int
rowstep
)
const
{
unsigned
short
int
position
=
0
;
//TODO: this --> encapsule
int
TLDEnsembleClassifier
::
code
(
const
uchar
*
data
,
int
rowstep
)
const
{
unsigned
short
int
position
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
measurements
.
size
();
i
++
){
position
=
position
<<
1
;
if
(
*
(
data
+
rowstep
*
measurements
[
i
].
val
[
0
]
+
measurements
[
i
].
val
[
1
])
<*
(
data
+
rowstep
*
measurements
[
i
].
val
[
2
]
+
measurements
[
i
].
val
[
3
])){
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment