Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
26f16e64
Commit
26f16e64
authored
Jun 12, 2015
by
Vladimir
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1 from Auron-X/TLD_fixes_&_optimizations
Tld fixes & optimizations
parents
844c30e8
1c70b5a0
Show whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
1617 additions
and
883 deletions
+1617
-883
tracking.hpp
modules/tracking/include/opencv2/tracking.hpp
+2
-1
tldDataset.hpp
modules/tracking/include/opencv2/tracking/tldDataset.hpp
+57
-0
tld_test.cpp
modules/tracking/samples/tld_test.cpp
+230
-0
tldDataset.cpp
modules/tracking/src/tldDataset.cpp
+143
-0
tldDetector.cpp
modules/tracking/src/tldDetector.cpp
+237
-0
tldDetector.hpp
modules/tracking/src/tldDetector.hpp
+103
-0
tldEnsembleClassifier.cpp
modules/tracking/src/tldEnsembleClassifier.cpp
+200
-0
tldEnsembleClassifier.hpp
modules/tracking/src/tldEnsembleClassifier.hpp
+71
-0
tldModel.cpp
modules/tracking/src/tldModel.cpp
+278
-0
tldModel.hpp
modules/tracking/src/tldModel.hpp
+92
-0
tldTracker.cpp
modules/tracking/src/tldTracker.cpp
+7
-661
tldTracker.hpp
modules/tracking/src/tldTracker.hpp
+120
-66
tldUtils.cpp
modules/tracking/src/tldUtils.cpp
+14
-155
tldUtils.hpp
modules/tracking/src/tldUtils.hpp
+63
-0
No files found.
modules/tracking/include/opencv2/tracking.hpp
View file @
26f16e64
...
@@ -306,6 +306,7 @@ The first argument is the name of the tracker and the second is a video source.
...
@@ -306,6 +306,7 @@ The first argument is the name of the tracker and the second is a video source.
*/
*/
#include "opencv2/tracking/tracker.hpp"
#include <opencv2/tracking/tracker.hpp>
#include <opencv2/tracking/tldDataset.hpp>
#endif //__OPENCV_TRACKING_LENLEN
#endif //__OPENCV_TRACKING_LENLEN
modules/tracking/include/opencv2/tracking/tldDataset.hpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_TLD_DATASET
#define OPENCV_TLD_DATASET
#include "opencv2/highgui.hpp"
namespace
cv
{
namespace
tld
{
CV_EXPORTS
cv
::
Rect2d
tld_InitDataset
(
int
datasetInd
,
const
char
*
rootPath
=
"TLD_dataset"
);
CV_EXPORTS
cv
::
Mat
tld_getNextDatasetFrame
();
}
}
#endif
\ No newline at end of file
modules/tracking/samples/tld_test.cpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using
namespace
std
;
using
namespace
cv
;
#define NUM_TEST_FRAMES 500
#define TEST_VIDEO_INDEX 1 //TLD Dataset Video Index from 1-10
//#define RECORD_VIDEO_FLG
static
Mat
image
;
static
Rect2d
boundingBox
;
static
bool
paused
;
static
bool
selectObject
=
false
;
static
bool
startSelection
=
false
;
static
void
onMouse
(
int
event
,
int
x
,
int
y
,
int
,
void
*
)
{
if
(
!
selectObject
)
{
switch
(
event
)
{
case
EVENT_LBUTTONDOWN
:
//set origin of the bounding box
startSelection
=
true
;
boundingBox
.
x
=
x
;
boundingBox
.
y
=
y
;
boundingBox
.
width
=
boundingBox
.
height
=
0
;
break
;
case
EVENT_LBUTTONUP
:
//sei with and height of the bounding box
boundingBox
.
width
=
std
::
abs
(
x
-
boundingBox
.
x
);
boundingBox
.
height
=
std
::
abs
(
y
-
boundingBox
.
y
);
paused
=
false
;
selectObject
=
true
;
break
;
case
EVENT_MOUSEMOVE
:
if
(
startSelection
&&
!
selectObject
)
{
//draw the bounding box
Mat
currentFrame
;
image
.
copyTo
(
currentFrame
);
rectangle
(
currentFrame
,
Point
((
int
)
boundingBox
.
x
,
(
int
)
boundingBox
.
y
),
Point
(
x
,
y
),
Scalar
(
255
,
0
,
0
),
2
,
1
);
imshow
(
"Tracking API"
,
currentFrame
);
}
break
;
}
}
}
int
main
()
{
//
// "MIL", "BOOSTING", "MEDIANFLOW", "TLD"
//
string
tracker_algorithm_name
=
"TLD"
;
Mat
frame
;
paused
=
false
;
namedWindow
(
"Tracking API"
,
0
);
setMouseCallback
(
"Tracking API"
,
onMouse
,
0
);
Ptr
<
Tracker
>
tracker
=
Tracker
::
create
(
tracker_algorithm_name
);
if
(
tracker
==
NULL
)
{
cout
<<
"***Error in the instantiation of the tracker...***
\n
"
;
getchar
();
return
0
;
}
//Get the first frame
////Open the capture
// VideoCapture cap(0);
// if( !cap.isOpened() )
// {
// cout << "Video stream error";
// return;
// }
//cap >> frame;
//From TLD dataset
selectObject
=
true
;
boundingBox
=
tld
::
tld_InitDataset
(
TEST_VIDEO_INDEX
,
"D:/opencv/TLD_dataset"
);
frame
=
tld
::
tld_getNextDatasetFrame
();
frame
.
copyTo
(
image
);
// Setup output video
#ifdef RECORD_VIDEO_FLG
String
outputFilename
=
"test.avi"
;
VideoWriter
outputVideo
;
outputVideo
.
open
(
outputFilename
,
-
1
,
30
,
Size
(
image
.
cols
,
image
.
rows
));
if
(
!
outputVideo
.
isOpened
())
{
std
::
cout
<<
"!!! Output video could not be opened"
<<
std
::
endl
;
getchar
();
return
;
}
#endif
rectangle
(
image
,
boundingBox
,
Scalar
(
255
,
0
,
0
),
2
,
1
);
imshow
(
"Tracking API"
,
image
);
bool
initialized
=
false
;
int
frameCounter
=
0
;
//Time measurment
int64
e3
=
getTickCount
();
for
(;;)
{
//Time measurment
int64
e1
=
getTickCount
();
//Frame num
frameCounter
++
;
if
(
frameCounter
==
NUM_TEST_FRAMES
)
break
;
char
c
=
(
char
)
waitKey
(
2
);
if
(
c
==
'q'
||
c
==
27
)
break
;
if
(
c
==
'p'
)
paused
=
!
paused
;
if
(
!
paused
)
{
//cap >> frame;
frame
=
tld
::
tld_getNextDatasetFrame
();
if
(
frame
.
empty
())
{
break
;
}
frame
.
copyTo
(
image
);
if
(
selectObject
)
{
if
(
!
initialized
)
{
//initializes the tracker
if
(
!
tracker
->
init
(
frame
,
boundingBox
))
{
cout
<<
"***Could not initialize tracker...***
\n
"
;
return
0
;
}
initialized
=
true
;
rectangle
(
image
,
boundingBox
,
Scalar
(
255
,
0
,
0
),
2
,
1
);
}
else
{
//updates the tracker
if
(
tracker
->
update
(
frame
,
boundingBox
))
{
rectangle
(
image
,
boundingBox
,
Scalar
(
255
,
0
,
0
),
2
,
1
);
}
}
}
imshow
(
"Tracking API"
,
image
);
#ifdef RECORD_VIDEO_FLG
outputVideo
<<
image
;
#endif
//Time measurment
int64
e2
=
getTickCount
();
double
t1
=
(
e2
-
e1
)
/
getTickFrequency
();
cout
<<
frameCounter
<<
"
\t
frame : "
<<
t1
*
1000.0
<<
"ms"
<<
endl
;
//waitKey(0);
}
}
//Time measurment
int64
e4
=
getTickCount
();
double
t2
=
(
e4
-
e3
)
/
getTickFrequency
();
cout
<<
"Average Time for Frame: "
<<
t2
*
1000.0
/
frameCounter
<<
"ms"
<<
endl
;
cout
<<
"Average FPS: "
<<
1.0
/
t2
*
frameCounter
<<
endl
;
waitKey
(
0
);
return
0
;
}
\ No newline at end of file
modules/tracking/src/tldDataset.cpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/tracking/tldDataset.hpp"
namespace
cv
{
namespace
tld
{
char
tldRootPath
[
100
];
int
frameNum
=
0
;
bool
flagPNG
=
false
;
cv
::
Rect2d
tld_InitDataset
(
int
datasetInd
,
const
char
*
rootPath
)
{
char
*
folderName
=
(
char
*
)
""
;
int
x
,
y
,
w
,
h
;
flagPNG
=
false
;
frameNum
=
1
;
if
(
datasetInd
==
1
)
{
folderName
=
(
char
*
)
"01_david"
;
x
=
165
,
y
=
83
;
w
=
51
;
h
=
54
;
frameNum
=
100
;
}
if
(
datasetInd
==
2
)
{
folderName
=
(
char
*
)
"02_jumping"
;
x
=
147
,
y
=
110
;
w
=
33
;
h
=
32
;
}
if
(
datasetInd
==
3
)
{
folderName
=
(
char
*
)
"03_pedestrian1"
;
x
=
47
,
y
=
51
;
w
=
21
;
h
=
36
;
}
if
(
datasetInd
==
4
)
{
folderName
=
(
char
*
)
"04_pedestrian2"
;
x
=
130
,
y
=
134
;
w
=
21
;
h
=
53
;
}
if
(
datasetInd
==
5
)
{
folderName
=
(
char
*
)
"05_pedestrian3"
;
x
=
154
,
y
=
102
;
w
=
24
;
h
=
52
;
}
if
(
datasetInd
==
6
)
{
folderName
=
(
char
*
)
"06_car"
;
x
=
142
,
y
=
125
;
w
=
90
;
h
=
39
;
}
if
(
datasetInd
==
7
)
{
folderName
=
(
char
*
)
"07_motocross"
;
x
=
290
,
y
=
43
;
w
=
23
;
h
=
40
;
flagPNG
=
true
;
}
if
(
datasetInd
==
8
)
{
folderName
=
(
char
*
)
"08_volkswagen"
;
x
=
273
,
y
=
77
;
w
=
27
;
h
=
25
;
}
if
(
datasetInd
==
9
)
{
folderName
=
(
char
*
)
"09_carchase"
;
x
=
145
,
y
=
84
;
w
=
54
;
h
=
37
;
}
if
(
datasetInd
==
10
){
folderName
=
(
char
*
)
"10_panda"
;
x
=
58
,
y
=
100
;
w
=
27
;
h
=
22
;
}
strcpy
(
tldRootPath
,
rootPath
);
strcat
(
tldRootPath
,
"
\\
"
);
strcat
(
tldRootPath
,
folderName
);
return
cv
::
Rect2d
(
x
,
y
,
w
,
h
);
}
cv
::
Mat
tld_getNextDatasetFrame
()
{
char
fullPath
[
100
];
char
numStr
[
10
];
strcpy
(
fullPath
,
tldRootPath
);
strcat
(
fullPath
,
"
\\
"
);
if
(
frameNum
<
10
)
strcat
(
fullPath
,
"0000"
);
else
if
(
frameNum
<
100
)
strcat
(
fullPath
,
"000"
);
else
if
(
frameNum
<
1000
)
strcat
(
fullPath
,
"00"
);
else
if
(
frameNum
<
10000
)
strcat
(
fullPath
,
"0"
);
sprintf
(
numStr
,
"%d"
,
frameNum
);
strcat
(
fullPath
,
numStr
);
if
(
flagPNG
)
strcat
(
fullPath
,
".png"
);
else
strcat
(
fullPath
,
".jpg"
);
frameNum
++
;
return
cv
::
imread
(
fullPath
);
}
}
}
\ No newline at end of file
modules/tracking/src/tldDetector.cpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldDetector.hpp"
namespace
cv
{
namespace
tld
{
// Calculate offsets for classifiers
void
TLDDetector
::
prepareClassifiers
(
int
rowstep
)
{
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
)
classifiers
[
i
].
prepareClassifier
(
rowstep
);
}
// Calculate posterior probability, that the patch belongs to the current EC model
double
TLDDetector
::
ensembleClassifierNum
(
const
uchar
*
data
)
{
double
p
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
classifiers
.
size
();
k
++
)
p
+=
classifiers
[
k
].
posteriorProbabilityFast
(
data
);
p
/=
classifiers
.
size
();
return
p
;
}
// Calculate Relative similarity of the patch (NN-Model)
double
TLDDetector
::
Sr
(
const
Mat_
<
uchar
>&
patch
)
{
double
splus
=
0.0
,
sminus
=
0.0
;
for
(
int
i
=
0
;
i
<
(
int
)(
*
positiveExamples
).
size
();
i
++
)
splus
=
std
::
max
(
splus
,
0.5
*
(
NCC
((
*
positiveExamples
)[
i
],
patch
)
+
1.0
));
for
(
int
i
=
0
;
i
<
(
int
)(
*
negativeExamples
).
size
();
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
((
*
negativeExamples
)[
i
],
patch
)
+
1.0
));
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
splus
/
(
sminus
+
splus
);
}
// Calculate Conservative similarity of the patch (NN-Model)
double
TLDDetector
::
Sc
(
const
Mat_
<
uchar
>&
patch
)
{
double
splus
=
0.0
,
sminus
=
0.0
;
int
med
=
getMedian
((
*
timeStampsPositive
));
for
(
int
i
=
0
;
i
<
(
int
)(
*
positiveExamples
).
size
();
i
++
)
{
if
((
int
)(
*
timeStampsPositive
)[
i
]
<=
med
)
splus
=
std
::
max
(
splus
,
0.5
*
(
NCC
((
*
positiveExamples
)[
i
],
patch
)
+
1.0
));
}
for
(
int
i
=
0
;
i
<
(
int
)(
*
negativeExamples
).
size
();
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
((
*
negativeExamples
)[
i
],
patch
)
+
1.0
));
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
splus
/
(
sminus
+
splus
);
}
// Generate Search Windows for detector from aspect ratio of initial BBs
void
TLDDetector
::
generateScanGrid
(
int
rows
,
int
cols
,
Size
initBox
,
std
::
vector
<
Rect2d
>&
res
,
bool
withScaling
)
{
res
.
clear
();
//Scales step: SCALE_STEP; Translation steps: 10% of width & 10% of height; minSize: 20pix
for
(
double
h
=
initBox
.
height
,
w
=
initBox
.
width
;
h
<
cols
&&
w
<
rows
;)
{
for
(
double
x
=
0
;
(
x
+
w
+
1.0
)
<=
cols
;
x
+=
(
0.1
*
w
))
{
for
(
double
y
=
0
;
(
y
+
h
+
1.0
)
<=
rows
;
y
+=
(
0.1
*
h
))
res
.
push_back
(
Rect2d
(
x
,
y
,
w
,
h
));
}
if
(
withScaling
)
{
if
(
h
<=
initBox
.
height
)
{
h
/=
SCALE_STEP
;
w
/=
SCALE_STEP
;
if
(
h
<
20
||
w
<
20
)
{
h
=
initBox
.
height
*
SCALE_STEP
;
w
=
initBox
.
width
*
SCALE_STEP
;
CV_Assert
(
h
>
initBox
.
height
||
w
>
initBox
.
width
);
}
}
else
{
h
*=
SCALE_STEP
;
w
*=
SCALE_STEP
;
}
}
else
{
break
;
}
}
//dprintf(("%d rects in res\n", (int)res.size()));
}
//Detection - returns most probable new target location (Max Sc)
bool
TLDDetector
::
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
)
{
patches
.
clear
();
Mat
resized_img
,
blurred_img
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
img
.
copyTo
(
resized_img
);
imgBlurred
.
copyTo
(
blurred_img
);
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
;
Size2d
size
=
img
.
size
();
double
scale
=
1.0
;
int
total
=
0
,
pass
=
0
;
int
npos
=
0
,
nneg
=
0
;
double
tmp
=
0
,
maxSc
=
-
5.0
;
Rect2d
maxScRect
;
//Detection part
//To fix: use precalculated BB
do
{
Mat_
<
double
>
intImgP
,
intImgP2
;
computeIntegralImages
(
resized_img
,
intImgP
,
intImgP2
);
prepareClassifiers
((
int
)
blurred_img
.
step
[
0
]);
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_img
.
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
)
{
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_img
.
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
)
{
LabeledPatch
labPatch
;
total
++
;
if
(
!
patchVariance
(
intImgP
,
intImgP2
,
originalVariancePtr
,
Point
(
dx
*
i
,
dy
*
j
),
initSize
))
continue
;
if
(
ensembleClassifierNum
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
))
<=
ENSEMBLE_THRESHOLD
)
continue
;
pass
++
;
labPatch
.
rect
=
Rect2d
(
dx
*
i
*
scale
,
dy
*
j
*
scale
,
initSize
.
width
*
scale
,
initSize
.
height
*
scale
);
resample
(
resized_img
,
Rect2d
(
Point
(
dx
*
i
,
dy
*
j
),
initSize
),
standardPatch
);
tmp
=
Sr
(
standardPatch
);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch
.
isObject
=
tmp
>
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
tmp
-
THETA_NN
)
<
0.1
;
patches
.
push_back
(
labPatch
);
//
if
(
!
labPatch
.
isObject
)
{
nneg
++
;
continue
;
}
else
{
npos
++
;
}
tmp
=
Sc
(
standardPatch
);
if
(
tmp
>
maxSc
)
{
maxSc
=
tmp
;
maxScRect
=
labPatch
.
rect
;
}
}
}
size
.
width
/=
SCALE_STEP
;
size
.
height
/=
SCALE_STEP
;
scale
*=
SCALE_STEP
;
resize
(
img
,
resized_img
,
size
,
0
,
0
,
DOWNSCALE_MODE
);
GaussianBlur
(
resized_img
,
blurred_img
,
GaussBlurKernelSize
,
0.0
f
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
if
(
maxSc
<
0
)
return
false
;
res
=
maxScRect
;
return
true
;
}
// Computes the variance of subimage given by box, with the help of two integral
// images intImgP and intImgP2 (sum of squares), which should be also provided.
bool
TLDDetector
::
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
*
originalVariance
,
Point
pt
,
Size
size
)
{
int
x
=
(
pt
.
x
),
y
=
(
pt
.
y
),
width
=
(
size
.
width
),
height
=
(
size
.
height
);
CV_Assert
(
0
<=
x
&&
(
x
+
width
)
<
intImgP
.
cols
&&
(
x
+
width
)
<
intImgP2
.
cols
);
CV_Assert
(
0
<=
y
&&
(
y
+
height
)
<
intImgP
.
rows
&&
(
y
+
height
)
<
intImgP2
.
rows
);
double
p
=
0
,
p2
=
0
;
double
A
,
B
,
C
,
D
;
A
=
intImgP
(
y
,
x
);
B
=
intImgP
(
y
,
x
+
width
);
C
=
intImgP
(
y
+
height
,
x
);
D
=
intImgP
(
y
+
height
,
x
+
width
);
p
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
A
=
intImgP2
(
y
,
x
);
B
=
intImgP2
(
y
,
x
+
width
);
C
=
intImgP2
(
y
+
height
,
x
);
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
return
((
p2
-
p
*
p
)
>
VARIANCE_THRESHOLD
*
*
originalVariance
);
}
}
}
\ No newline at end of file
modules/tracking/src/tldDetector.hpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_TLD_DETECTOR
#define OPENCV_TLD_DETECTOR
#include "precomp.hpp"
#include "tldEnsembleClassifier.hpp"
#include "tldUtils.hpp"
namespace
cv
{
namespace
tld
{
const
int
STANDARD_PATCH_SIZE
=
15
;
const
int
NEG_EXAMPLES_IN_INIT_MODEL
=
300
;
const
int
MAX_EXAMPLES_IN_MODEL
=
500
;
const
int
MEASURES_PER_CLASSIFIER
=
13
;
const
int
GRIDSIZE
=
15
;
const
int
DOWNSCALE_MODE
=
cv
::
INTER_LINEAR
;
const
double
THETA_NN
=
0.50
;
const
double
CORE_THRESHOLD
=
0.5
;
const
double
SCALE_STEP
=
1.2
;
const
double
ENSEMBLE_THRESHOLD
=
0.5
;
const
double
VARIANCE_THRESHOLD
=
0.5
;
const
double
NEXPERT_THRESHOLD
=
0.2
;
static
const
cv
::
Size
GaussBlurKernelSize
(
3
,
3
);
class
TLDDetector
{
public
:
TLDDetector
(){}
~
TLDDetector
(){}
inline
double
ensembleClassifierNum
(
const
uchar
*
data
);
inline
void
prepareClassifiers
(
int
rowstep
);
double
Sr
(
const
Mat_
<
uchar
>&
patch
);
double
Sc
(
const
Mat_
<
uchar
>&
patch
);
std
::
vector
<
TLDEnsembleClassifier
>
classifiers
;
std
::
vector
<
Mat_
<
uchar
>
>
*
positiveExamples
,
*
negativeExamples
;
std
::
vector
<
int
>
*
timeStampsPositive
,
*
timeStampsNegative
;
double
*
originalVariancePtr
;
static
void
generateScanGrid
(
int
rows
,
int
cols
,
Size
initBox
,
std
::
vector
<
Rect2d
>&
res
,
bool
withScaling
=
false
);
struct
LabeledPatch
{
Rect2d
rect
;
bool
isObject
,
shouldBeIntegrated
;
};
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
,
Size
initSize
);
protected
:
friend
class
MyMouseCallbackDEBUG
;
void
computeIntegralImages
(
const
Mat
&
img
,
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
){
integral
(
img
,
intImgP
,
intImgP2
,
CV_64F
);
}
inline
bool
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
*
originalVariance
,
Point
pt
,
Size
size
);
};
}
}
#endif
\ No newline at end of file
modules/tracking/src/tldEnsembleClassifier.cpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldEnsembleClassifier.hpp"
namespace
cv
{
namespace
tld
{
// Constructor
TLDEnsembleClassifier
::
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
)
:
lastStep_
(
-
1
)
{
int
posSize
=
1
,
mpc
=
end
-
beg
;
for
(
int
i
=
0
;
i
<
mpc
;
i
++
)
posSize
*=
2
;
posAndNeg
.
assign
(
posSize
,
Point2i
(
0
,
0
));
measurements
.
assign
(
meas
.
begin
()
+
beg
,
meas
.
begin
()
+
end
);
offset
.
assign
(
mpc
,
Point2i
(
0
,
0
));
}
// Calculate measure locations from 15x15 grid on minSize patches
void
TLDEnsembleClassifier
::
stepPrefSuff
(
std
::
vector
<
Vec4b
>&
arr
,
int
pos
,
int
len
,
int
gridSize
)
{
#if 0
int step = len / (gridSize - 1), pref = (len - step * (gridSize - 1)) / 2;
for (int i = 0; i < (int)(sizeof(x1) / sizeof(x1[0])); i++)
arr[i] = pref + arr[i] * step;
#else
int
total
=
len
-
gridSize
;
int
quo
=
total
/
(
gridSize
-
1
),
rem
=
total
%
(
gridSize
-
1
);
int
smallStep
=
quo
,
bigStep
=
quo
+
1
;
int
bigOnes
=
rem
,
smallOnes
=
gridSize
-
bigOnes
-
1
;
int
bigOnes_front
=
bigOnes
/
2
,
bigOnes_back
=
bigOnes
-
bigOnes_front
;
for
(
int
i
=
0
;
i
<
(
int
)
arr
.
size
();
i
++
)
{
if
(
arr
[
i
].
val
[
pos
]
<
bigOnes_back
)
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
arr
[
i
].
val
[
pos
]
*
bigStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
if
(
arr
[
i
].
val
[
pos
]
<
(
bigOnes_front
+
smallOnes
))
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
bigOnes_front
*
bigStep
+
(
arr
[
i
].
val
[
pos
]
-
bigOnes_front
)
*
smallStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
if
(
arr
[
i
].
val
[
pos
]
<
(
bigOnes_front
+
smallOnes
+
bigOnes_back
))
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
bigOnes_front
*
bigStep
+
smallOnes
*
smallStep
+
(
arr
[
i
].
val
[
pos
]
-
(
bigOnes_front
+
smallOnes
))
*
bigStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
len
-
1
);
}
#endif
}
// Calculate offsets for classifier
void
TLDEnsembleClassifier
::
prepareClassifier
(
int
rowstep
)
{
if
(
lastStep_
!=
rowstep
)
{
lastStep_
=
rowstep
;
for
(
int
i
=
0
;
i
<
(
int
)
offset
.
size
();
i
++
)
{
offset
[
i
].
x
=
rowstep
*
measurements
[
i
].
val
[
2
]
+
measurements
[
i
].
val
[
0
];
offset
[
i
].
y
=
rowstep
*
measurements
[
i
].
val
[
3
]
+
measurements
[
i
].
val
[
1
];
}
}
}
// Integrate patch into the Ensemble Classifier model
void
TLDEnsembleClassifier
::
integrate
(
const
Mat_
<
uchar
>&
patch
,
bool
isPositive
)
{
int
position
=
code
(
patch
.
data
,
(
int
)
patch
.
step
[
0
]);
if
(
isPositive
)
posAndNeg
[
position
].
x
++
;
else
posAndNeg
[
position
].
y
++
;
}
// Calculate posterior probability on the patch
double
TLDEnsembleClassifier
::
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
{
int
position
=
code
(
data
,
rowstep
);
double
posNum
=
(
double
)
posAndNeg
[
position
].
x
,
negNum
=
(
double
)
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
return
0.0
;
else
return
posNum
/
(
posNum
+
negNum
);
}
double
TLDEnsembleClassifier
::
posteriorProbabilityFast
(
const
uchar
*
data
)
const
{
int
position
=
codeFast
(
data
);
double
posNum
=
(
double
)
posAndNeg
[
position
].
x
,
negNum
=
(
double
)
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
return
0.0
;
else
return
posNum
/
(
posNum
+
negNum
);
}
// Calculate the 13-bit fern index
int
TLDEnsembleClassifier
::
codeFast
(
const
uchar
*
data
)
const
{
int
position
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
measurements
.
size
();
i
++
)
{
position
=
position
<<
1
;
if
(
data
[
offset
[
i
].
x
]
<
data
[
offset
[
i
].
y
])
position
++
;
}
return
position
;
}
int
TLDEnsembleClassifier
::
code
(
const
uchar
*
data
,
int
rowstep
)
const
{
int
position
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
measurements
.
size
();
i
++
)
{
position
=
position
<<
1
;
if
(
*
(
data
+
rowstep
*
measurements
[
i
].
val
[
2
]
+
measurements
[
i
].
val
[
0
])
<
*
(
data
+
rowstep
*
measurements
[
i
].
val
[
3
]
+
measurements
[
i
].
val
[
1
]))
{
position
++
;
}
}
return
position
;
}
// Create fern classifiers
int
TLDEnsembleClassifier
::
makeClassifiers
(
Size
size
,
int
measurePerClassifier
,
int
gridSize
,
std
::
vector
<
TLDEnsembleClassifier
>&
classifiers
)
{
std
::
vector
<
Vec4b
>
measurements
;
//Generate random measures for 10 ferns x 13 measures
for
(
int
i
=
0
;
i
<
10
*
measurePerClassifier
;
i
++
)
{
Vec4b
m
;
m
.
val
[
0
]
=
rand
()
%
15
;
m
.
val
[
1
]
=
rand
()
%
15
;
m
.
val
[
2
]
=
rand
()
%
15
;
m
.
val
[
3
]
=
rand
()
%
15
;
measurements
.
push_back
(
m
);
}
//Warp measures to minSize patch coordinates
stepPrefSuff
(
measurements
,
0
,
size
.
width
,
gridSize
);
stepPrefSuff
(
measurements
,
1
,
size
.
width
,
gridSize
);
stepPrefSuff
(
measurements
,
2
,
size
.
height
,
gridSize
);
stepPrefSuff
(
measurements
,
3
,
size
.
height
,
gridSize
);
//Compile fern classifiers
for
(
int
i
=
0
,
howMany
=
(
int
)
measurements
.
size
()
/
measurePerClassifier
;
i
<
howMany
;
i
++
)
classifiers
.
push_back
(
TLDEnsembleClassifier
(
measurements
,
i
*
measurePerClassifier
,
(
i
+
1
)
*
measurePerClassifier
));
return
(
int
)
classifiers
.
size
();
}
}
}
\ No newline at end of file
modules/tracking/src/tldEnsembleClassifier.hpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <vector>
#include "precomp.hpp"
namespace
cv
{
namespace
tld
{
class
TLDEnsembleClassifier
{
public
:
static
int
makeClassifiers
(
Size
size
,
int
measurePerClassifier
,
int
gridSize
,
std
::
vector
<
TLDEnsembleClassifier
>&
classifiers
);
void
integrate
(
const
Mat_
<
uchar
>&
patch
,
bool
isPositive
);
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
void
prepareClassifier
(
int
rowstep
);
private
:
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
int
codeFast
(
const
uchar
*
data
)
const
;
std
::
vector
<
Point2i
>
posAndNeg
;
std
::
vector
<
Vec4b
>
measurements
;
std
::
vector
<
Point2i
>
offset
;
int
lastStep_
;
};
}
}
\ No newline at end of file
modules/tracking/src/tldModel.cpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "tldModel.hpp"
namespace
cv
{
namespace
tld
{
//Constructor
TrackerTLDModel
::
TrackerTLDModel
(
TrackerTLD
::
Params
params
,
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
Size
minSize
)
:
timeStampPositiveNext
(
0
),
timeStampNegativeNext
(
0
),
minSize_
(
minSize
),
params_
(
params
),
boundingBox_
(
boundingBox
)
{
std
::
vector
<
Rect2d
>
closest
,
scanGrid
;
Mat
scaledImg
,
blurredImg
,
image_blurred
;
//Create Detector
detector
=
Ptr
<
TLDDetector
>
(
new
TLDDetector
());
//Propagate data to Detector
detector
->
positiveExamples
=
&
positiveExamples
;
detector
->
negativeExamples
=
&
negativeExamples
;
detector
->
timeStampsPositive
=
&
timeStampsPositive
;
detector
->
timeStampsNegative
=
&
timeStampsNegative
;
detector
->
originalVariancePtr
=
&
originalVariance_
;
//Calculate the variance in initial BB
originalVariance_
=
variance
(
image
(
boundingBox
));
//Find the scale
double
scale
=
scaleAndBlur
(
image
,
cvRound
(
log
(
1.0
*
boundingBox
.
width
/
(
minSize
.
width
))
/
log
(
SCALE_STEP
)),
scaledImg
,
blurredImg
,
GaussBlurKernelSize
,
SCALE_STEP
);
GaussianBlur
(
image
,
image_blurred
,
GaussBlurKernelSize
,
0.0
);
TLDDetector
::
generateScanGrid
(
image
.
rows
,
image
.
cols
,
minSize_
,
scanGrid
);
getClosestN
(
scanGrid
,
Rect2d
(
boundingBox
.
x
/
scale
,
boundingBox
.
y
/
scale
,
boundingBox
.
width
/
scale
,
boundingBox
.
height
/
scale
),
10
,
closest
);
Mat_
<
uchar
>
blurredPatch
(
minSize
);
TLDEnsembleClassifier
::
makeClassifiers
(
minSize
,
MEASURES_PER_CLASSIFIER
,
GRIDSIZE
,
detector
->
classifiers
);
//Generate initial positive samples and put them to the model
positiveExamples
.
reserve
(
200
);
for
(
int
i
=
0
;
i
<
(
int
)
closest
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
20
;
j
++
)
{
Point2f
center
;
Size2f
size
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
center
.
x
=
(
float
)(
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
center
.
y
=
(
float
)(
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
size
.
width
=
(
float
)(
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,
(
double
)
1.01
));
size
.
height
=
(
float
)(
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,
(
double
)
1.01
));
float
angle
=
(
float
)
rng
.
uniform
(
-
10.0
,
10.0
);
resample
(
scaledImg
,
RotatedRect
(
center
,
size
,
angle
),
standardPatch
);
for
(
int
y
=
0
;
y
<
standardPatch
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
standardPatch
.
cols
;
x
++
)
{
standardPatch
(
x
,
y
)
+=
(
uchar
)
rng
.
gaussian
(
5.0
);
}
}
#ifdef BLUR_AS_VADIM
GaussianBlur
(
standardPatch
,
blurredPatch
,
GaussBlurKernelSize
,
0.0
);
resize
(
blurredPatch
,
blurredPatch
,
minSize
);
#else
resample
(
blurredImg
,
RotatedRect
(
center
,
size
,
angle
),
blurredPatch
);
#endif
pushIntoModel
(
standardPatch
,
true
);
for
(
int
k
=
0
;
k
<
(
int
)
detector
->
classifiers
.
size
();
k
++
)
detector
->
classifiers
[
k
].
integrate
(
blurredPatch
,
true
);
}
}
//Generate initial negative samples and put them to the model
TLDDetector
::
generateScanGrid
(
image
.
rows
,
image
.
cols
,
minSize
,
scanGrid
,
true
);
negativeExamples
.
clear
();
negativeExamples
.
reserve
(
NEG_EXAMPLES_IN_INIT_MODEL
);
std
::
vector
<
int
>
indices
;
indices
.
reserve
(
NEG_EXAMPLES_IN_INIT_MODEL
);
while
((
int
)
negativeExamples
.
size
()
<
NEG_EXAMPLES_IN_INIT_MODEL
)
{
int
i
=
rng
.
uniform
((
int
)
0
,
(
int
)
scanGrid
.
size
());
if
(
std
::
find
(
indices
.
begin
(),
indices
.
end
(),
i
)
==
indices
.
end
()
&&
overlap
(
boundingBox
,
scanGrid
[
i
])
<
NEXPERT_THRESHOLD
)
{
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
resample
(
image
,
scanGrid
[
i
],
standardPatch
);
pushIntoModel
(
standardPatch
,
false
);
resample
(
image_blurred
,
scanGrid
[
i
],
blurredPatch
);
for
(
int
k
=
0
;
k
<
(
int
)
detector
->
classifiers
.
size
();
k
++
)
detector
->
classifiers
[
k
].
integrate
(
blurredPatch
,
false
);
}
}
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
}
void
TrackerTLDModel
::
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
)
{
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
),
blurredPatch
(
minSize_
);
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
patches
.
size
();
k
++
)
{
if
(
patches
[
k
].
shouldBeIntegrated
)
{
resample
(
img
,
patches
[
k
].
rect
,
standardPatch
);
if
(
patches
[
k
].
isObject
)
{
positiveIntoModel
++
;
pushIntoModel
(
standardPatch
,
true
);
}
else
{
negativeIntoModel
++
;
pushIntoModel
(
standardPatch
,
false
);
}
}
#ifdef CLOSED_LOOP
if
(
patches
[
k
].
shouldBeIntegrated
||
!
patches
[
k
].
isPositive
)
#else
if
(
patches
[
k
].
shouldBeIntegrated
)
#endif
{
resample
(
imgBlurred
,
patches
[
k
].
rect
,
blurredPatch
);
if
(
patches
[
k
].
isObject
)
positiveIntoEnsemble
++
;
else
negativeIntoEnsemble
++
;
for
(
int
i
=
0
;
i
<
(
int
)
detector
->
classifiers
.
size
();
i
++
)
detector
->
classifiers
[
i
].
integrate
(
blurredPatch
,
patches
[
k
].
isObject
);
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
void
TrackerTLDModel
::
integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
)
{
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
eForModel
.
size
();
k
++
)
{
double
sr
=
detector
->
Sr
(
eForModel
[
k
]);
if
((
sr
>
THETA_NN
)
!=
isPositive
)
{
if
(
isPositive
)
{
positiveIntoModel
++
;
pushIntoModel
(
eForModel
[
k
],
true
);
}
else
{
negativeIntoModel
++
;
pushIntoModel
(
eForModel
[
k
],
false
);
}
}
double
p
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
detector
->
classifiers
.
size
();
i
++
)
p
+=
detector
->
classifiers
[
i
].
posteriorProbability
(
eForEnsemble
[
k
].
data
,
(
int
)
eForEnsemble
[
k
].
step
[
0
]);
p
/=
detector
->
classifiers
.
size
();
if
((
p
>
ENSEMBLE_THRESHOLD
)
!=
isPositive
)
{
if
(
isPositive
)
positiveIntoEnsemble
++
;
else
negativeIntoEnsemble
++
;
for
(
int
i
=
0
;
i
<
(
int
)
detector
->
classifiers
.
size
();
i
++
)
detector
->
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
//Push the patch to the model
void
TrackerTLDModel
::
pushIntoModel
(
const
Mat_
<
uchar
>&
example
,
bool
positive
)
{
std
::
vector
<
Mat_
<
uchar
>
>*
proxyV
;
int
*
proxyN
;
std
::
vector
<
int
>*
proxyT
;
if
(
positive
)
{
proxyV
=
&
positiveExamples
;
proxyN
=
&
timeStampPositiveNext
;
proxyT
=
&
timeStampsPositive
;
}
else
{
proxyV
=
&
negativeExamples
;
proxyN
=
&
timeStampNegativeNext
;
proxyT
=
&
timeStampsNegative
;
}
if
((
int
)
proxyV
->
size
()
<
MAX_EXAMPLES_IN_MODEL
)
{
proxyV
->
push_back
(
example
);
proxyT
->
push_back
(
*
proxyN
);
}
else
{
int
index
=
rng
.
uniform
((
int
)
0
,
(
int
)
proxyV
->
size
());
(
*
proxyV
)[
index
]
=
example
;
(
*
proxyT
)[
index
]
=
(
*
proxyN
);
}
(
*
proxyN
)
++
;
}
void
TrackerTLDModel
::
printme
(
FILE
*
port
)
{
dfprintf
((
port
,
"TrackerTLDModel:
\n
"
));
dfprintf
((
port
,
"
\t
positiveExamples.size() = %d
\n
"
,
(
int
)
positiveExamples
.
size
()));
dfprintf
((
port
,
"
\t
negativeExamples.size() = %d
\n
"
,
(
int
)
negativeExamples
.
size
()));
}
}
}
\ No newline at end of file
modules/tracking/src/tldModel.hpp
0 → 100644
View file @
26f16e64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_TLD_MODEL
#define OPENCV_TLD_MODEL
#include "precomp.hpp"
#include "tldDetector.hpp"
#include "tldUtils.hpp"
namespace
cv
{
namespace
tld
{
class
TrackerTLDModel
:
public
TrackerModel
{
public
:
TrackerTLDModel
(
TrackerTLD
::
Params
params
,
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
Size
minSize
);
Rect2d
getBoundingBox
(){
return
boundingBox_
;
}
void
setBoudingBox
(
Rect2d
boundingBox
){
boundingBox_
=
boundingBox
;
}
void
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
);
void
integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
);
Size
getMinSize
(){
return
minSize_
;
}
void
printme
(
FILE
*
port
=
stdout
);
Ptr
<
TLDDetector
>
detector
;
std
::
vector
<
Mat_
<
uchar
>
>
positiveExamples
,
negativeExamples
;
std
::
vector
<
int
>
timeStampsPositive
,
timeStampsNegative
;
int
timeStampPositiveNext
,
timeStampNegativeNext
;
double
originalVariance_
;
double
getOriginalVariance
(){
return
originalVariance_
;
}
protected
:
Size
minSize_
;
TrackerTLD
::
Params
params_
;
void
pushIntoModel
(
const
Mat_
<
uchar
>&
example
,
bool
positive
);
void
modelEstimationImpl
(
const
std
::
vector
<
Mat
>&
/*responses*/
){}
void
modelUpdateImpl
(){}
Rect2d
boundingBox_
;
RNG
rng
;
};
}
}
#endif
\ No newline at end of file
modules/tracking/src/tld
_t
racker.cpp
→
modules/tracking/src/tld
T
racker.cpp
View file @
26f16e64
...
@@ -39,220 +39,11 @@
...
@@ -39,220 +39,11 @@
//
//
//M*/
//M*/
#include "precomp.hpp"
#include "tldTracker.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "time.h"
#include<algorithm>
#include<limits.h>
#include "tld_tracker.hpp"
#include "opencv2/highgui.hpp"
/*
* FIXME(optimize):
* no median
* direct formula in resamples
* FIXME(issues)
* THETA_NN 0.5<->0.6 dramatic change vs video 6 !!
* TODO(features)
* benchmark: two streams of photos -->better video
* (try inter_area for resize)
* TODO:
* fix pushbot->pick commits->compare_branches->all in 1->resubmit
* || video(0.5<->0.6) -->debug if box size is less than 20
* perfect PN
*
* vadim:
* ?3. comment each function/method
* 5. empty lines to separate logical...
* 6. comment logical sections
* 11. group decls logically, order of statements
*
* ?10. all in one class
* todo:
* initializer lists;
*/
/* design decisions:
*/
namespace
cv
{
namespace
tld
namespace
cv
{
const
int
STANDARD_PATCH_SIZE
=
15
;
const
int
NEG_EXAMPLES_IN_INIT_MODEL
=
300
;
const
int
MAX_EXAMPLES_IN_MODEL
=
500
;
const
int
MEASURES_PER_CLASSIFIER
=
13
;
const
int
GRIDSIZE
=
15
;
const
int
DOWNSCALE_MODE
=
cv
::
INTER_LINEAR
;
const
double
THETA_NN
=
0.50
;
const
double
CORE_THRESHOLD
=
0.5
;
const
double
SCALE_STEP
=
1.2
;
const
double
ENSEMBLE_THRESHOLD
=
0.5
;
const
double
VARIANCE_THRESHOLD
=
0.5
;
const
double
NEXPERT_THRESHOLD
=
0.2
;
#define BLUR_AS_VADIM
#undef CLOSED_LOOP
static
const
cv
::
Size
GaussBlurKernelSize
(
3
,
3
);
class
TLDDetector
;
class
MyMouseCallbackDEBUG
{
public
:
MyMouseCallbackDEBUG
(
Mat
&
img
,
Mat
&
imgBlurred
,
TLDDetector
*
detector
)
:
img_
(
img
),
imgBlurred_
(
imgBlurred
),
detector_
(
detector
){}
static
void
onMouse
(
int
event
,
int
x
,
int
y
,
int
,
void
*
obj
){
((
MyMouseCallbackDEBUG
*
)
obj
)
->
onMouse
(
event
,
x
,
y
);
}
MyMouseCallbackDEBUG
&
operator
=
(
const
MyMouseCallbackDEBUG
&
/*other*/
){
return
*
this
;
}
private
:
void
onMouse
(
int
event
,
int
x
,
int
y
);
Mat
&
img_
,
imgBlurred_
;
TLDDetector
*
detector_
;
};
class
Data
{
public
:
Data
(
Rect2d
initBox
);
Size
getMinSize
(){
return
minSize
;
}
double
getScale
(){
return
scale
;
}
bool
confident
;
bool
failedLastTime
;
int
frameNum
;
void
printme
(
FILE
*
port
=
stdout
);
private
:
double
scale
;
Size
minSize
;
};
class
TLDDetector
{
public
:
TLDDetector
(
const
TrackerTLD
::
Params
&
params
,
Ptr
<
TrackerModel
>
model_in
)
:
model
(
model_in
),
params_
(
params
){}
~
TLDDetector
(){}
static
void
generateScanGrid
(
int
rows
,
int
cols
,
Size
initBox
,
std
::
vector
<
Rect2d
>&
res
,
bool
withScaling
=
false
);
struct
LabeledPatch
{
Rect2d
rect
;
bool
isObject
,
shouldBeIntegrated
;
};
bool
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
);
protected
:
friend
class
MyMouseCallbackDEBUG
;
Ptr
<
TrackerModel
>
model
;
void
computeIntegralImages
(
const
Mat
&
img
,
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
){
integral
(
img
,
intImgP
,
intImgP2
,
CV_64F
);
}
inline
bool
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
originalVariance
,
Point
pt
,
Size
size
);
TrackerTLD
::
Params
params_
;
};
template
<
class
T
,
class
Tparams
>
class
TrackerProxyImpl
:
public
TrackerProxy
{
public
:
TrackerProxyImpl
(
Tparams
params
=
Tparams
())
:
params_
(
params
){}
bool
init
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
)
{
trackerPtr
=
T
::
createTracker
();
return
trackerPtr
->
init
(
image
,
boundingBox
);
}
bool
update
(
const
Mat
&
image
,
Rect2d
&
boundingBox
)
{
return
trackerPtr
->
update
(
image
,
boundingBox
);
}
private
:
Ptr
<
T
>
trackerPtr
;
Tparams
params_
;
Rect2d
boundingBox_
;
};
class
TrackerTLDModel
:
public
TrackerModel
{
public
:
TrackerTLDModel
(
TrackerTLD
::
Params
params
,
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
Size
minSize
);
Rect2d
getBoundingBox
(){
return
boundingBox_
;
}
void
setBoudingBox
(
Rect2d
boundingBox
){
boundingBox_
=
boundingBox
;
}
double
getOriginalVariance
(){
return
originalVariance_
;
}
inline
double
ensembleClassifierNum
(
const
uchar
*
data
);
inline
void
prepareClassifiers
(
int
rowstep
);
double
Sr
(
const
Mat_
<
uchar
>&
patch
);
double
Sc
(
const
Mat_
<
uchar
>&
patch
);
void
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
);
void
integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
);
Size
getMinSize
(){
return
minSize_
;
}
void
printme
(
FILE
*
port
=
stdout
);
protected
:
Size
minSize_
;
int
timeStampPositiveNext
,
timeStampNegativeNext
;
TrackerTLD
::
Params
params_
;
void
pushIntoModel
(
const
Mat_
<
uchar
>&
example
,
bool
positive
);
void
modelEstimationImpl
(
const
std
::
vector
<
Mat
>&
/*responses*/
){}
void
modelUpdateImpl
(){}
Rect2d
boundingBox_
;
double
originalVariance_
;
std
::
vector
<
Mat_
<
uchar
>
>
positiveExamples
,
negativeExamples
;
std
::
vector
<
int
>
timeStampsPositive
,
timeStampsNegative
;
RNG
rng
;
std
::
vector
<
TLDEnsembleClassifier
>
classifiers
;
};
class
TrackerTLDImpl
:
public
TrackerTLD
{
{
public
:
TrackerTLDImpl
(
const
TrackerTLD
::
Params
&
parameters
=
TrackerTLD
::
Params
());
void
read
(
const
FileNode
&
fn
);
void
write
(
FileStorage
&
fs
)
const
;
protected
:
class
Pexpert
{
public
:
Pexpert
(
const
Mat
&
img_in
,
const
Mat
&
imgBlurred_in
,
Rect2d
&
resultBox_in
,
const
TLDDetector
*
detector_in
,
TrackerTLD
::
Params
params_in
,
Size
initSize_in
)
:
img_
(
img_in
),
imgBlurred_
(
imgBlurred_in
),
resultBox_
(
resultBox_in
),
detector_
(
detector_in
),
params_
(
params_in
),
initSize_
(
initSize_in
){}
bool
operator
()(
Rect2d
/*box*/
){
return
false
;
}
int
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
);
protected
:
Pexpert
(){}
Mat
img_
,
imgBlurred_
;
Rect2d
resultBox_
;
const
TLDDetector
*
detector_
;
TrackerTLD
::
Params
params_
;
RNG
rng
;
Size
initSize_
;
};
class
Nexpert
:
public
Pexpert
{
public
:
Nexpert
(
const
Mat
&
img_in
,
Rect2d
&
resultBox_in
,
const
TLDDetector
*
detector_in
,
TrackerTLD
::
Params
params_in
)
{
img_
=
img_in
;
resultBox_
=
resultBox_in
;
detector_
=
detector_in
;
params_
=
params_in
;
}
bool
operator
()(
Rect2d
box
);
int
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
)
{
examplesForModel
.
clear
();
examplesForEnsemble
.
clear
();
return
0
;
}
};
bool
initImpl
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
);
bool
updateImpl
(
const
Mat
&
image
,
Rect2d
&
boundingBox
);
TrackerTLD
::
Params
params
;
Ptr
<
Data
>
data
;
Ptr
<
TrackerProxy
>
trackerProxy
;
Ptr
<
TLDDetector
>
detector
;
};
}
TrackerTLD
::
Params
::
Params
(){}
void
TrackerTLD
::
Params
::
read
(
const
cv
::
FileNode
&
/*fn*/
){}
void
TrackerTLD
::
Params
::
write
(
cv
::
FileStorage
&
/*fs*/
)
const
{}
Ptr
<
TrackerTLD
>
TrackerTLD
::
createTracker
(
const
TrackerTLD
::
Params
&
parameters
)
Ptr
<
TrackerTLD
>
TrackerTLD
::
createTracker
(
const
TrackerTLD
::
Params
&
parameters
)
{
{
...
@@ -299,7 +90,7 @@ bool TrackerTLDImpl::initImpl(const Mat& image, const Rect2d& boundingBox)
...
@@ -299,7 +90,7 @@ bool TrackerTLDImpl::initImpl(const Mat& image, const Rect2d& boundingBox)
myBoundingBox
.
height
*=
scale
;
myBoundingBox
.
height
*=
scale
;
}
}
model
=
Ptr
<
TrackerTLDModel
>
(
new
TrackerTLDModel
(
params
,
image_gray
,
myBoundingBox
,
data
->
getMinSize
()));
model
=
Ptr
<
TrackerTLDModel
>
(
new
TrackerTLDModel
(
params
,
image_gray
,
myBoundingBox
,
data
->
getMinSize
()));
detector
=
Ptr
<
TLDDetector
>
(
new
TLDDetector
(
params
,
model
));
data
->
confident
=
false
;
data
->
confident
=
false
;
data
->
failedLastTime
=
false
;
data
->
failedLastTime
=
false
;
...
@@ -329,14 +120,14 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -329,14 +120,14 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
{
{
Rect2d
tmpCandid
=
boundingBox
;
Rect2d
tmpCandid
=
boundingBox
;
if
(
(
(
i
==
0
)
&&
!
data
->
failedLastTime
&&
trackerProxy
->
update
(
image
,
tmpCandid
)
)
||
if
(
(
(
i
==
0
)
&&
!
data
->
failedLastTime
&&
trackerProxy
->
update
(
image
,
tmpCandid
)
)
||
(
(
i
==
1
)
&&
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
)
)
)
((
i
==
1
)
&&
(
tldModel
->
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
tldModel
->
getMinSize
())))
)
{
{
candidates
.
push_back
(
tmpCandid
);
candidates
.
push_back
(
tmpCandid
);
if
(
i
==
0
)
if
(
i
==
0
)
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
else
else
resample
(
imageForDetector
,
tmpCandid
,
standardPatch
);
resample
(
imageForDetector
,
tmpCandid
,
standardPatch
);
candidatesRes
.
push_back
(
tldModel
->
Sc
(
standardPatch
));
candidatesRes
.
push_back
(
tldModel
->
detector
->
Sc
(
standardPatch
));
}
}
else
else
{
{
...
@@ -386,8 +177,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -386,8 +177,8 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
if
(
data
->
confident
)
if
(
data
->
confident
)
{
{
Pexpert
pExpert
(
imageForDetector
,
image_blurred
,
boundingBox
,
detector
,
params
,
data
->
getMinSize
());
Pexpert
pExpert
(
imageForDetector
,
image_blurred
,
boundingBox
,
tldModel
->
detector
,
params
,
data
->
getMinSize
());
Nexpert
nExpert
(
imageForDetector
,
boundingBox
,
detector
,
params
);
Nexpert
nExpert
(
imageForDetector
,
boundingBox
,
tldModel
->
detector
,
params
);
std
::
vector
<
Mat_
<
uchar
>
>
examplesForModel
,
examplesForEnsemble
;
std
::
vector
<
Mat_
<
uchar
>
>
examplesForModel
,
examplesForEnsemble
;
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
int
negRelabeled
=
0
;
int
negRelabeled
=
0
;
...
@@ -426,363 +217,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
...
@@ -426,363 +217,6 @@ bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
return
true
;
return
true
;
}
}
TrackerTLDModel
::
TrackerTLDModel
(
TrackerTLD
::
Params
params
,
const
Mat
&
image
,
const
Rect2d
&
boundingBox
,
Size
minSize
)
:
minSize_
(
minSize
),
timeStampPositiveNext
(
0
),
timeStampNegativeNext
(
0
),
params_
(
params
),
boundingBox_
(
boundingBox
)
{
originalVariance_
=
variance
(
image
(
boundingBox
));
std
::
vector
<
Rect2d
>
closest
,
scanGrid
;
Mat
scaledImg
,
blurredImg
,
image_blurred
;
double
scale
=
scaleAndBlur
(
image
,
cvRound
(
log
(
1.0
*
boundingBox
.
width
/
(
minSize
.
width
))
/
log
(
SCALE_STEP
)),
scaledImg
,
blurredImg
,
GaussBlurKernelSize
,
SCALE_STEP
);
GaussianBlur
(
image
,
image_blurred
,
GaussBlurKernelSize
,
0.0
);
TLDDetector
::
generateScanGrid
(
image
.
rows
,
image
.
cols
,
minSize
,
scanGrid
);
getClosestN
(
scanGrid
,
Rect2d
(
boundingBox
.
x
/
scale
,
boundingBox
.
y
/
scale
,
boundingBox
.
width
/
scale
,
boundingBox
.
height
/
scale
),
10
,
closest
);
Mat_
<
uchar
>
blurredPatch
(
minSize
);
TLDEnsembleClassifier
::
makeClassifiers
(
minSize
,
MEASURES_PER_CLASSIFIER
,
GRIDSIZE
,
classifiers
);
positiveExamples
.
reserve
(
200
);
for
(
int
i
=
0
;
i
<
(
int
)
closest
.
size
();
i
++
)
{
for
(
int
j
=
0
;
j
<
20
;
j
++
)
{
Point2f
center
;
Size2f
size
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
center
.
x
=
(
float
)(
closest
[
i
].
x
+
closest
[
i
].
width
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
center
.
y
=
(
float
)(
closest
[
i
].
y
+
closest
[
i
].
height
*
(
0.5
+
rng
.
uniform
(
-
0.01
,
0.01
)));
size
.
width
=
(
float
)(
closest
[
i
].
width
*
rng
.
uniform
((
double
)
0.99
,
(
double
)
1.01
));
size
.
height
=
(
float
)(
closest
[
i
].
height
*
rng
.
uniform
((
double
)
0.99
,
(
double
)
1.01
));
float
angle
=
(
float
)
rng
.
uniform
(
-
10.0
,
10.0
);
resample
(
scaledImg
,
RotatedRect
(
center
,
size
,
angle
),
standardPatch
);
for
(
int
y
=
0
;
y
<
standardPatch
.
rows
;
y
++
)
{
for
(
int
x
=
0
;
x
<
standardPatch
.
cols
;
x
++
)
{
standardPatch
(
x
,
y
)
+=
(
uchar
)
rng
.
gaussian
(
5.0
);
}
}
#ifdef BLUR_AS_VADIM
GaussianBlur
(
standardPatch
,
blurredPatch
,
GaussBlurKernelSize
,
0.0
);
resize
(
blurredPatch
,
blurredPatch
,
minSize
);
#else
resample
(
blurredImg
,
RotatedRect
(
center
,
size
,
angle
),
blurredPatch
);
#endif
pushIntoModel
(
standardPatch
,
true
);
for
(
int
k
=
0
;
k
<
(
int
)
classifiers
.
size
();
k
++
)
classifiers
[
k
].
integrate
(
blurredPatch
,
true
);
}
}
TLDDetector
::
generateScanGrid
(
image
.
rows
,
image
.
cols
,
minSize
,
scanGrid
,
true
);
negativeExamples
.
clear
();
negativeExamples
.
reserve
(
NEG_EXAMPLES_IN_INIT_MODEL
);
std
::
vector
<
int
>
indices
;
indices
.
reserve
(
NEG_EXAMPLES_IN_INIT_MODEL
);
while
(
(
int
)
negativeExamples
.
size
()
<
NEG_EXAMPLES_IN_INIT_MODEL
)
{
int
i
=
rng
.
uniform
((
int
)
0
,
(
int
)
scanGrid
.
size
());
if
(
std
::
find
(
indices
.
begin
(),
indices
.
end
(),
i
)
==
indices
.
end
()
&&
overlap
(
boundingBox
,
scanGrid
[
i
])
<
NEXPERT_THRESHOLD
)
{
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
resample
(
image
,
scanGrid
[
i
],
standardPatch
);
pushIntoModel
(
standardPatch
,
false
);
resample
(
image_blurred
,
scanGrid
[
i
],
blurredPatch
);
for
(
int
k
=
0
;
k
<
(
int
)
classifiers
.
size
();
k
++
)
classifiers
[
k
].
integrate
(
blurredPatch
,
false
);
}
}
//dprintf(("positive patches: %d\nnegative patches: %d\n", (int)positiveExamples.size(), (int)negativeExamples.size()));
}
void
TLDDetector
::
generateScanGrid
(
int
rows
,
int
cols
,
Size
initBox
,
std
::
vector
<
Rect2d
>&
res
,
bool
withScaling
)
{
res
.
clear
();
//scales step: SCALE_STEP; hor step: 10% of width; verstep: 10% of height; minsize: 20pix
for
(
double
h
=
initBox
.
height
,
w
=
initBox
.
width
;
h
<
cols
&&
w
<
rows
;
)
{
for
(
double
x
=
0
;
(
x
+
w
+
1.0
)
<=
cols
;
x
+=
(
0.1
*
w
)
)
{
for
(
double
y
=
0
;
(
y
+
h
+
1.0
)
<=
rows
;
y
+=
(
0.1
*
h
)
)
res
.
push_back
(
Rect2d
(
x
,
y
,
w
,
h
));
}
if
(
withScaling
)
{
if
(
h
<=
initBox
.
height
)
{
h
/=
SCALE_STEP
;
w
/=
SCALE_STEP
;
if
(
h
<
20
||
w
<
20
)
{
h
=
initBox
.
height
*
SCALE_STEP
;
w
=
initBox
.
width
*
SCALE_STEP
;
CV_Assert
(
h
>
initBox
.
height
||
w
>
initBox
.
width
);
}
}
else
{
h
*=
SCALE_STEP
;
w
*=
SCALE_STEP
;
}
}
else
{
break
;
}
}
//dprintf(("%d rects in res\n", (int)res.size()));
}
bool
TLDDetector
::
detect
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
Rect2d
&
res
,
std
::
vector
<
LabeledPatch
>&
patches
)
{
TrackerTLDModel
*
tldModel
=
((
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
model
));
Size
initSize
=
tldModel
->
getMinSize
();
patches
.
clear
();
Mat
resized_img
,
blurred_img
;
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
img
.
copyTo
(
resized_img
);
imgBlurred
.
copyTo
(
blurred_img
);
double
originalVariance
=
tldModel
->
getOriginalVariance
();
;
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
;
Size2d
size
=
img
.
size
();
double
scale
=
1.0
;
int
total
=
0
,
pass
=
0
;
int
npos
=
0
,
nneg
=
0
;
double
tmp
=
0
,
maxSc
=
-
5.0
;
Rect2d
maxScRect
;
//START_TICK("detector");
do
{
Mat_
<
double
>
intImgP
,
intImgP2
;
computeIntegralImages
(
resized_img
,
intImgP
,
intImgP2
);
tldModel
->
prepareClassifiers
((
int
)
blurred_img
.
step
[
0
]);
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_img
.
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
)
{
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_img
.
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
)
{
LabeledPatch
labPatch
;
total
++
;
if
(
!
patchVariance
(
intImgP
,
intImgP2
,
originalVariance
,
Point
(
dx
*
i
,
dy
*
j
),
initSize
)
)
continue
;
if
(
tldModel
->
ensembleClassifierNum
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
))
<=
ENSEMBLE_THRESHOLD
)
continue
;
pass
++
;
labPatch
.
rect
=
Rect2d
(
dx
*
i
*
scale
,
dy
*
j
*
scale
,
initSize
.
width
*
scale
,
initSize
.
height
*
scale
);
resample
(
resized_img
,
Rect2d
(
Point
(
dx
*
i
,
dy
*
j
),
initSize
),
standardPatch
);
tmp
=
tldModel
->
Sr
(
standardPatch
);
labPatch
.
isObject
=
tmp
>
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
tmp
-
THETA_NN
)
<
0.1
;
patches
.
push_back
(
labPatch
);
if
(
!
labPatch
.
isObject
)
{
nneg
++
;
continue
;
}
else
{
npos
++
;
}
tmp
=
tldModel
->
Sc
(
standardPatch
);
if
(
tmp
>
maxSc
)
{
maxSc
=
tmp
;
maxScRect
=
labPatch
.
rect
;
}
}
}
size
.
width
/=
SCALE_STEP
;
size
.
height
/=
SCALE_STEP
;
scale
*=
SCALE_STEP
;
resize
(
img
,
resized_img
,
size
,
0
,
0
,
DOWNSCALE_MODE
);
GaussianBlur
(
resized_img
,
blurred_img
,
GaussBlurKernelSize
,
0.0
f
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//END_TICK("detector");
//dfprintf((stdout, "after NCC: nneg = %d npos = %d\n", nneg, npos));
#if !1
std
::
vector
<
Rect2d
>
poss
,
negs
;
for
(
int
i
=
0
;
i
<
(
int
)
patches
.
size
();
i
++
)
{
if
(
patches
[
i
].
isObject
)
poss
.
push_back
(
patches
[
i
].
rect
);
else
negs
.
push_back
(
patches
[
i
].
rect
);
}
//dfprintf((stdout, "%d pos and %d neg\n", (int)poss.size(), (int)negs.size()));
drawWithRects
(
img
,
negs
,
poss
,
"tech"
);
#endif
//dfprintf((stdout, "%d after ensemble\n", pass));
if
(
maxSc
<
0
)
return
false
;
res
=
maxScRect
;
return
true
;
}
/** Computes the variance of subimage given by box, with the help of two integral
* images intImgP and intImgP2 (sum of squares), which should be also provided.*/
bool
TLDDetector
::
patchVariance
(
Mat_
<
double
>&
intImgP
,
Mat_
<
double
>&
intImgP2
,
double
originalVariance
,
Point
pt
,
Size
size
)
{
int
x
=
(
pt
.
x
),
y
=
(
pt
.
y
),
width
=
(
size
.
width
),
height
=
(
size
.
height
);
CV_Assert
(
0
<=
x
&&
(
x
+
width
)
<
intImgP
.
cols
&&
(
x
+
width
)
<
intImgP2
.
cols
);
CV_Assert
(
0
<=
y
&&
(
y
+
height
)
<
intImgP
.
rows
&&
(
y
+
height
)
<
intImgP2
.
rows
);
double
p
=
0
,
p2
=
0
;
double
A
,
B
,
C
,
D
;
A
=
intImgP
(
y
,
x
);
B
=
intImgP
(
y
,
x
+
width
);
C
=
intImgP
(
y
+
height
,
x
);
D
=
intImgP
(
y
+
height
,
x
+
width
);
p
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
A
=
intImgP2
(
y
,
x
);
B
=
intImgP2
(
y
,
x
+
width
);
C
=
intImgP2
(
y
+
height
,
x
);
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
return
((
p2
-
p
*
p
)
>
VARIANCE_THRESHOLD
*
originalVariance
);
}
double
TrackerTLDModel
::
ensembleClassifierNum
(
const
uchar
*
data
)
{
double
p
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
classifiers
.
size
();
k
++
)
p
+=
classifiers
[
k
].
posteriorProbabilityFast
(
data
);
p
/=
classifiers
.
size
();
return
p
;
}
double
TrackerTLDModel
::
Sr
(
const
Mat_
<
uchar
>&
patch
)
{
double
splus
=
0.0
,
sminus
=
0.0
;
for
(
int
i
=
0
;
i
<
(
int
)
positiveExamples
.
size
();
i
++
)
splus
=
std
::
max
(
splus
,
0.5
*
(
NCC
(
positiveExamples
[
i
],
patch
)
+
1.0
));
for
(
int
i
=
0
;
i
<
(
int
)
negativeExamples
.
size
();
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
negativeExamples
[
i
],
patch
)
+
1.0
));
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
splus
/
(
sminus
+
splus
);
}
double
TrackerTLDModel
::
Sc
(
const
Mat_
<
uchar
>&
patch
)
{
double
splus
=
0.0
,
sminus
=
0.0
;
int
med
=
getMedian
(
timeStampsPositive
);
for
(
int
i
=
0
;
i
<
(
int
)
positiveExamples
.
size
();
i
++
)
{
if
(
(
int
)
timeStampsPositive
[
i
]
<=
med
)
splus
=
std
::
max
(
splus
,
0.5
*
(
NCC
(
positiveExamples
[
i
],
patch
)
+
1.0
));
}
for
(
int
i
=
0
;
i
<
(
int
)
negativeExamples
.
size
();
i
++
)
sminus
=
std
::
max
(
sminus
,
0.5
*
(
NCC
(
negativeExamples
[
i
],
patch
)
+
1.0
));
if
(
splus
+
sminus
==
0.0
)
return
0.0
;
return
splus
/
(
sminus
+
splus
);
}
void
TrackerTLDModel
::
integrateRelabeled
(
Mat
&
img
,
Mat
&
imgBlurred
,
const
std
::
vector
<
TLDDetector
::
LabeledPatch
>&
patches
)
{
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
),
blurredPatch
(
minSize_
);
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
patches
.
size
();
k
++
)
{
if
(
patches
[
k
].
shouldBeIntegrated
)
{
resample
(
img
,
patches
[
k
].
rect
,
standardPatch
);
if
(
patches
[
k
].
isObject
)
{
positiveIntoModel
++
;
pushIntoModel
(
standardPatch
,
true
);
}
else
{
negativeIntoModel
++
;
pushIntoModel
(
standardPatch
,
false
);
}
}
#ifdef CLOSED_LOOP
if
(
patches
[
k
].
shouldBeIntegrated
||
!
patches
[
k
].
isPositive
)
#else
if
(
patches
[
k
].
shouldBeIntegrated
)
#endif
{
resample
(
imgBlurred
,
patches
[
k
].
rect
,
blurredPatch
);
if
(
patches
[
k
].
isObject
)
positiveIntoEnsemble
++
;
else
negativeIntoEnsemble
++
;
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
)
classifiers
[
i
].
integrate
(
blurredPatch
,
patches
[
k
].
isObject
);
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0)
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
void
TrackerTLDModel
::
integrateAdditional
(
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForModel
,
const
std
::
vector
<
Mat_
<
uchar
>
>&
eForEnsemble
,
bool
isPositive
)
{
int
positiveIntoModel
=
0
,
negativeIntoModel
=
0
,
positiveIntoEnsemble
=
0
,
negativeIntoEnsemble
=
0
;
for
(
int
k
=
0
;
k
<
(
int
)
eForModel
.
size
();
k
++
)
{
double
sr
=
Sr
(
eForModel
[
k
]);
if
(
(
sr
>
THETA_NN
)
!=
isPositive
)
{
if
(
isPositive
)
{
positiveIntoModel
++
;
pushIntoModel
(
eForModel
[
k
],
true
);
}
else
{
negativeIntoModel
++
;
pushIntoModel
(
eForModel
[
k
],
false
);
}
}
double
p
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
)
p
+=
classifiers
[
i
].
posteriorProbability
(
eForEnsemble
[
k
].
data
,
(
int
)
eForEnsemble
[
k
].
step
[
0
]);
p
/=
classifiers
.
size
();
if
(
(
p
>
ENSEMBLE_THRESHOLD
)
!=
isPositive
)
{
if
(
isPositive
)
positiveIntoEnsemble
++
;
else
negativeIntoEnsemble
++
;
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
)
classifiers
[
i
].
integrate
(
eForEnsemble
[
k
],
isPositive
);
}
}
/*
if( negativeIntoModel > 0 )
dfprintf((stdout, "negativeIntoModel = %d ", negativeIntoModel));
if( positiveIntoModel > 0 )
dfprintf((stdout, "positiveIntoModel = %d ", positiveIntoModel));
if( negativeIntoEnsemble > 0 )
dfprintf((stdout, "negativeIntoEnsemble = %d ", negativeIntoEnsemble));
if( positiveIntoEnsemble > 0 )
dfprintf((stdout, "positiveIntoEnsemble = %d ", positiveIntoEnsemble));
dfprintf((stdout, "\n"));*/
}
int
TrackerTLDImpl
::
Pexpert
::
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
)
int
TrackerTLDImpl
::
Pexpert
::
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
)
{
{
...
@@ -858,94 +292,6 @@ void Data::printme(FILE* port)
...
@@ -858,94 +292,6 @@ void Data::printme(FILE* port)
dfprintf
((
port
,
"
\t
minSize = %dx%d
\n
"
,
minSize
.
width
,
minSize
.
height
));
dfprintf
((
port
,
"
\t
minSize = %dx%d
\n
"
,
minSize
.
width
,
minSize
.
height
));
}
}
void
TrackerTLDModel
::
printme
(
FILE
*
port
)
{
dfprintf
((
port
,
"TrackerTLDModel:
\n
"
));
dfprintf
((
port
,
"
\t
positiveExamples.size() = %d
\n
"
,
(
int
)
positiveExamples
.
size
()));
dfprintf
((
port
,
"
\t
negativeExamples.size() = %d
\n
"
,
(
int
)
negativeExamples
.
size
()));
}
void
MyMouseCallbackDEBUG
::
onMouse
(
int
event
,
int
x
,
int
y
)
{
if
(
event
==
EVENT_LBUTTONDOWN
)
{
Mat
imgCanvas
;
img_
.
copyTo
(
imgCanvas
);
TrackerTLDModel
*
tldModel
=
((
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
detector_
->
model
));
Size
initSize
=
tldModel
->
getMinSize
();
Mat_
<
uchar
>
standardPatch
(
STANDARD_PATCH_SIZE
,
STANDARD_PATCH_SIZE
);
double
originalVariance
=
tldModel
->
getOriginalVariance
();
double
tmp
;
Mat
resized_img
,
blurred_img
;
double
scale
=
SCALE_STEP
;
//double scale = SCALE_STEP * SCALE_STEP * SCALE_STEP * SCALE_STEP;
Size2d
size
(
img_
.
cols
/
scale
,
img_
.
rows
/
scale
);
resize
(
img_
,
resized_img
,
size
);
resize
(
imgBlurred_
,
blurred_img
,
size
);
Mat_
<
double
>
intImgP
,
intImgP2
;
detector_
->
computeIntegralImages
(
resized_img
,
intImgP
,
intImgP2
);
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
,
i
=
(
int
)(
x
/
scale
/
dx
),
j
=
(
int
)(
y
/
scale
/
dy
);
dfprintf
((
stderr
,
"patchVariance = %s
\n
"
,
(
detector_
->
patchVariance
(
intImgP
,
intImgP2
,
originalVariance
,
Point
(
dx
*
i
,
dy
*
j
),
initSize
))
?
"true"
:
"false"
));
tldModel
->
prepareClassifiers
((
int
)
blurred_img
.
step
[
0
]);
dfprintf
((
stderr
,
"p = %f
\n
"
,
(
tldModel
->
ensembleClassifierNum
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
)))));
fprintf
(
stderr
,
"ensembleClassifier = %s
\n
"
,
(
!
(
tldModel
->
ensembleClassifierNum
(
&
blurred_img
.
at
<
uchar
>
(
dy
*
j
,
dx
*
i
))
>
ENSEMBLE_THRESHOLD
))
?
"true"
:
"false"
);
resample
(
resized_img
,
Rect2d
(
Point
(
dx
*
i
,
dy
*
j
),
initSize
),
standardPatch
);
tmp
=
tldModel
->
Sr
(
standardPatch
);
dfprintf
((
stderr
,
"Sr = %f
\n
"
,
tmp
));
dfprintf
((
stderr
,
"isObject = %s
\n
"
,
(
tmp
>
THETA_NN
)
?
"true"
:
"false"
));
dfprintf
((
stderr
,
"shouldBeIntegrated = %s
\n
"
,
(
abs
(
tmp
-
THETA_NN
)
<
0.1
)
?
"true"
:
"false"
));
dfprintf
((
stderr
,
"Sc = %f
\n
"
,
tldModel
->
Sc
(
standardPatch
)));
rectangle
(
imgCanvas
,
Rect2d
(
Point2d
(
scale
*
dx
*
i
,
scale
*
dy
*
j
),
Size2d
(
initSize
.
width
*
scale
,
initSize
.
height
*
scale
)),
0
,
2
,
1
);
imshow
(
"picker"
,
imgCanvas
);
waitKey
();
}
}
}
void
TrackerTLDModel
::
pushIntoModel
(
const
Mat_
<
uchar
>&
example
,
bool
positive
)
{
std
::
vector
<
Mat_
<
uchar
>
>*
proxyV
;
int
*
proxyN
;
std
::
vector
<
int
>*
proxyT
;
if
(
positive
)
{
proxyV
=
&
positiveExamples
;
proxyN
=
&
timeStampPositiveNext
;
proxyT
=
&
timeStampsPositive
;
}
else
{
proxyV
=
&
negativeExamples
;
proxyN
=
&
timeStampNegativeNext
;
proxyT
=
&
timeStampsNegative
;
}
if
(
(
int
)
proxyV
->
size
()
<
MAX_EXAMPLES_IN_MODEL
)
{
proxyV
->
push_back
(
example
);
proxyT
->
push_back
(
*
proxyN
);
}
else
{
int
index
=
rng
.
uniform
((
int
)
0
,
(
int
)
proxyV
->
size
());
(
*
proxyV
)[
index
]
=
example
;
(
*
proxyT
)[
index
]
=
(
*
proxyN
);
}
(
*
proxyN
)
++
;
}
void
TrackerTLDModel
::
prepareClassifiers
(
int
rowstep
)
{
for
(
int
i
=
0
;
i
<
(
int
)
classifiers
.
size
();
i
++
)
classifiers
[
i
].
prepareClassifier
(
rowstep
);
}
}
}
/* namespace tld */
}
/* namespace cv */
modules/tracking/src/tld
_t
racker.hpp
→
modules/tracking/src/tld
T
racker.hpp
View file @
26f16e64
...
@@ -39,80 +39,28 @@
...
@@ -39,80 +39,28 @@
//
//
//M*/
//M*/
#ifndef OPENCV_TLD_TRACKER
#define OPENCV_TLD_TRACKER
#include "precomp.hpp"
#include "precomp.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgproc.hpp"
#include "tldModel.hpp"
#include<algorithm>
#include<algorithm>
#include<limits.h>
#include<limits.h>
namespace
cv
{
namespace
tld
namespace
cv
{
{
//debug functions and variables
TrackerTLD
::
Params
::
Params
(){}
#define ALEX_DEBUG
#ifdef ALEX_DEBUG
void
TrackerTLD
::
Params
::
read
(
const
cv
::
FileNode
&
/*fn*/
){}
#define dfprintf(x) fprintf x
#define dprintf(x) printf x
void
TrackerTLD
::
Params
::
write
(
cv
::
FileStorage
&
/*fs*/
)
const
{}
#else
#define dfprintf(x)
namespace
tld
#define dprintf(x)
#endif
#define MEASURE_TIME(a)\
{\
clock_t start; float milisec = 0.0; \
start = clock(); {a} milisec = 1000.0 * (clock() - start) / CLOCKS_PER_SEC; \
dprintf(("%-90s took %f milis\n", #a, milisec));\
}
#define HERE dprintf(("line %d\n", __LINE__)); fflush(stderr);
#define START_TICK(name)\
{ \
clock_t start; double milisec = 0.0; start = clock();
#define END_TICK(name) milisec = 1000.0 * (clock() - start) / CLOCKS_PER_SEC; \
dprintf(("%s took %f milis\n", name, milisec)); \
}
extern
Rect2d
etalon
;
void
myassert
(
const
Mat
&
img
);
void
printPatch
(
const
Mat_
<
uchar
>&
standardPatch
);
std
::
string
type2str
(
const
Mat
&
mat
);
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
Rect2d
whiteOne
=
Rect2d
(
-
1.0
,
-
1.0
,
-
1.0
,
-
1.0
));
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
std
::
vector
<
Rect2d
>&
whiteOnes
,
String
fileName
=
""
);
//aux functions and variables
template
<
typename
T
>
inline
T
CLIP
(
T
x
,
T
a
,
T
b
){
return
std
::
min
(
std
::
max
(
x
,
a
),
b
);
}
/** Computes overlap between the two given rectangles. Overlap is computed as ratio of rectangles' intersection to that
* of their union.*/
double
overlap
(
const
Rect2d
&
r1
,
const
Rect2d
&
r2
);
/** Resamples the area surrounded by r2 in img so it matches the size of samples, where it is written.*/
void
resample
(
const
Mat
&
img
,
const
RotatedRect
&
r2
,
Mat_
<
uchar
>&
samples
);
/** Specialization of resample() for rectangles without retation for better performance and simplicity.*/
void
resample
(
const
Mat
&
img
,
const
Rect2d
&
r2
,
Mat_
<
uchar
>&
samples
);
/** Computes the variance of single given image.*/
double
variance
(
const
Mat
&
img
);
/** Computes normalized corellation coefficient between the two patches (they should be
* of the same size).*/
double
NCC
(
const
Mat_
<
uchar
>&
patch1
,
const
Mat_
<
uchar
>&
patch2
);
void
getClosestN
(
std
::
vector
<
Rect2d
>&
scanGrid
,
Rect2d
bBox
,
int
n
,
std
::
vector
<
Rect2d
>&
res
);
double
scaleAndBlur
(
const
Mat
&
originalImg
,
int
scale
,
Mat
&
scaledImg
,
Mat
&
blurredImg
,
Size
GaussBlurKernelSize
,
double
scaleStep
);
int
getMedian
(
const
std
::
vector
<
int
>&
values
,
int
size
=
-
1
);
class
TLDEnsembleClassifier
{
{
public
:
static
int
makeClassifiers
(
Size
size
,
int
measurePerClassifier
,
int
gridSize
,
std
::
vector
<
TLDEnsembleClassifier
>&
classifiers
);
void
integrate
(
const
Mat_
<
uchar
>&
patch
,
bool
isPositive
);
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
void
prepareClassifier
(
int
rowstep
);
private
:
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
int
codeFast
(
const
uchar
*
data
)
const
;
std
::
vector
<
Point2i
>
posAndNeg
;
std
::
vector
<
Vec4b
>
measurements
;
std
::
vector
<
Point2i
>
offset
;
int
lastStep_
;
};
class
TrackerProxy
class
TrackerProxy
{
{
...
@@ -122,4 +70,109 @@ public:
...
@@ -122,4 +70,109 @@ public:
virtual
~
TrackerProxy
(){}
virtual
~
TrackerProxy
(){}
};
};
}}
class
MyMouseCallbackDEBUG
{
public
:
MyMouseCallbackDEBUG
(
Mat
&
img
,
Mat
&
imgBlurred
,
TLDDetector
*
detector
)
:
img_
(
img
),
imgBlurred_
(
imgBlurred
),
detector_
(
detector
){}
static
void
onMouse
(
int
event
,
int
x
,
int
y
,
int
,
void
*
obj
){
((
MyMouseCallbackDEBUG
*
)
obj
)
->
onMouse
(
event
,
x
,
y
);
}
MyMouseCallbackDEBUG
&
operator
=
(
const
MyMouseCallbackDEBUG
&
/*other*/
){
return
*
this
;
}
private
:
void
onMouse
(
int
event
,
int
x
,
int
y
);
Mat
&
img_
,
imgBlurred_
;
TLDDetector
*
detector_
;
};
class
Data
{
public
:
Data
(
Rect2d
initBox
);
Size
getMinSize
(){
return
minSize
;
}
double
getScale
(){
return
scale
;
}
bool
confident
;
bool
failedLastTime
;
int
frameNum
;
void
printme
(
FILE
*
port
=
stdout
);
private
:
double
scale
;
Size
minSize
;
};
template
<
class
T
,
class
Tparams
>
class
TrackerProxyImpl
:
public
TrackerProxy
{
public
:
TrackerProxyImpl
(
Tparams
params
=
Tparams
())
:
params_
(
params
){}
bool
init
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
)
{
trackerPtr
=
T
::
createTracker
();
return
trackerPtr
->
init
(
image
,
boundingBox
);
}
bool
update
(
const
Mat
&
image
,
Rect2d
&
boundingBox
)
{
return
trackerPtr
->
update
(
image
,
boundingBox
);
}
private
:
Ptr
<
T
>
trackerPtr
;
Tparams
params_
;
Rect2d
boundingBox_
;
};
#define BLUR_AS_VADIM
#undef CLOSED_LOOP
class
TrackerTLDImpl
:
public
TrackerTLD
{
public
:
TrackerTLDImpl
(
const
TrackerTLD
::
Params
&
parameters
=
TrackerTLD
::
Params
());
void
read
(
const
FileNode
&
fn
);
void
write
(
FileStorage
&
fs
)
const
;
protected
:
class
Pexpert
{
public
:
Pexpert
(
const
Mat
&
img_in
,
const
Mat
&
imgBlurred_in
,
Rect2d
&
resultBox_in
,
const
TLDDetector
*
detector_in
,
TrackerTLD
::
Params
params_in
,
Size
initSize_in
)
:
img_
(
img_in
),
imgBlurred_
(
imgBlurred_in
),
resultBox_
(
resultBox_in
),
detector_
(
detector_in
),
params_
(
params_in
),
initSize_
(
initSize_in
){}
bool
operator
()(
Rect2d
/*box*/
){
return
false
;
}
int
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
);
protected
:
Pexpert
(){}
Mat
img_
,
imgBlurred_
;
Rect2d
resultBox_
;
const
TLDDetector
*
detector_
;
TrackerTLD
::
Params
params_
;
RNG
rng
;
Size
initSize_
;
};
class
Nexpert
:
public
Pexpert
{
public
:
Nexpert
(
const
Mat
&
img_in
,
Rect2d
&
resultBox_in
,
const
TLDDetector
*
detector_in
,
TrackerTLD
::
Params
params_in
)
{
img_
=
img_in
;
resultBox_
=
resultBox_in
;
detector_
=
detector_in
;
params_
=
params_in
;
}
bool
operator
()(
Rect2d
box
);
int
additionalExamples
(
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForModel
,
std
::
vector
<
Mat_
<
uchar
>
>&
examplesForEnsemble
)
{
examplesForModel
.
clear
();
examplesForEnsemble
.
clear
();
return
0
;
}
};
bool
initImpl
(
const
Mat
&
image
,
const
Rect2d
&
boundingBox
);
bool
updateImpl
(
const
Mat
&
image
,
Rect2d
&
boundingBox
);
TrackerTLD
::
Params
params
;
Ptr
<
Data
>
data
;
Ptr
<
TrackerProxy
>
trackerProxy
;
};
}
}
#endif
\ No newline at end of file
modules/tracking/src/tld
_u
tils.cpp
→
modules/tracking/src/tld
U
tils.cpp
View file @
26f16e64
...
@@ -39,20 +39,15 @@
...
@@ -39,20 +39,15 @@
//
//
//M*/
//M*/
#include "precomp.hpp"
#include "tldUtils.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "time.h"
#include<algorithm>
#include<limits.h>
#include<math.h>
#include<opencv2/highgui.hpp>
#include "tld_tracker.hpp"
namespace
cv
{
namespace
tld
namespace
cv
{
namespace
tld
{
{
//
d
ebug functions and variables
//
D
ebug functions and variables
Rect2d
etalon
(
14.0
,
110.0
,
20.0
,
20.0
);
Rect2d
etalon
(
14.0
,
110.0
,
20.0
,
20.0
);
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
Rect2d
whiteOne
)
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
Rect2d
whiteOne
)
{
{
...
@@ -95,7 +90,6 @@ void myassert(const Mat& img)
...
@@ -95,7 +90,6 @@ void myassert(const Mat& img)
}
}
dprintf
((
"black: %d out of %d (%f)
\n
"
,
count
,
img
.
rows
*
img
.
cols
,
1.0
*
count
/
img
.
rows
/
img
.
cols
));
dprintf
((
"black: %d out of %d (%f)
\n
"
,
count
,
img
.
rows
*
img
.
cols
,
1.0
*
count
/
img
.
rows
/
img
.
cols
));
}
}
void
printPatch
(
const
Mat_
<
uchar
>&
standardPatch
)
void
printPatch
(
const
Mat_
<
uchar
>&
standardPatch
)
{
{
for
(
int
i
=
0
;
i
<
standardPatch
.
rows
;
i
++
)
for
(
int
i
=
0
;
i
<
standardPatch
.
rows
;
i
++
)
...
@@ -105,7 +99,6 @@ void printPatch(const Mat_<uchar>& standardPatch)
...
@@ -105,7 +99,6 @@ void printPatch(const Mat_<uchar>& standardPatch)
dprintf
((
"
\n
"
));
dprintf
((
"
\n
"
));
}
}
}
}
std
::
string
type2str
(
const
Mat
&
mat
)
std
::
string
type2str
(
const
Mat
&
mat
)
{
{
int
type
=
mat
.
type
();
int
type
=
mat
.
type
();
...
@@ -131,7 +124,7 @@ std::string type2str(const Mat& mat)
...
@@ -131,7 +124,7 @@ std::string type2str(const Mat& mat)
return
r
;
return
r
;
}
}
//
generic functions
//
Scale & Blur image using scale Indx
double
scaleAndBlur
(
const
Mat
&
originalImg
,
int
scale
,
Mat
&
scaledImg
,
Mat
&
blurredImg
,
Size
GaussBlurKernelSize
,
double
scaleStep
)
double
scaleAndBlur
(
const
Mat
&
originalImg
,
int
scale
,
Mat
&
scaledImg
,
Mat
&
blurredImg
,
Size
GaussBlurKernelSize
,
double
scaleStep
)
{
{
double
dScale
=
1.0
;
double
dScale
=
1.0
;
...
@@ -142,6 +135,8 @@ double scaleAndBlur(const Mat& originalImg, int scale, Mat& scaledImg, Mat& blur
...
@@ -142,6 +135,8 @@ double scaleAndBlur(const Mat& originalImg, int scale, Mat& scaledImg, Mat& blur
GaussianBlur
(
scaledImg
,
blurredImg
,
GaussBlurKernelSize
,
0.0
);
GaussianBlur
(
scaledImg
,
blurredImg
,
GaussBlurKernelSize
,
0.0
);
return
dScale
;
return
dScale
;
}
}
//Find N-closest BB to the target
void
getClosestN
(
std
::
vector
<
Rect2d
>&
scanGrid
,
Rect2d
bBox
,
int
n
,
std
::
vector
<
Rect2d
>&
res
)
void
getClosestN
(
std
::
vector
<
Rect2d
>&
scanGrid
,
Rect2d
bBox
,
int
n
,
std
::
vector
<
Rect2d
>&
res
)
{
{
if
(
n
>=
(
int
)
scanGrid
.
size
()
)
if
(
n
>=
(
int
)
scanGrid
.
size
()
)
...
@@ -180,6 +175,7 @@ void getClosestN(std::vector<Rect2d>& scanGrid, Rect2d bBox, int n, std::vector<
...
@@ -180,6 +175,7 @@ void getClosestN(std::vector<Rect2d>& scanGrid, Rect2d bBox, int n, std::vector<
}
}
}
}
//Calculate patch variance
double
variance
(
const
Mat
&
img
)
double
variance
(
const
Mat
&
img
)
{
{
double
p
=
0
,
p2
=
0
;
double
p
=
0
,
p2
=
0
;
...
@@ -196,6 +192,7 @@ double variance(const Mat& img)
...
@@ -196,6 +192,7 @@ double variance(const Mat& img)
return
p2
-
p
*
p
;
return
p2
-
p
*
p
;
}
}
//Normalized Correlation Coefficient
double
NCC
(
const
Mat_
<
uchar
>&
patch1
,
const
Mat_
<
uchar
>&
patch2
)
double
NCC
(
const
Mat_
<
uchar
>&
patch1
,
const
Mat_
<
uchar
>&
patch2
)
{
{
CV_Assert
(
patch1
.
rows
==
patch2
.
rows
);
CV_Assert
(
patch1
.
rows
==
patch2
.
rows
);
...
@@ -217,6 +214,7 @@ double NCC(const Mat_<uchar>& patch1, const Mat_<uchar>& patch2)
...
@@ -217,6 +214,7 @@ double NCC(const Mat_<uchar>& patch1, const Mat_<uchar>& patch2)
double
ares
=
(
sq2
==
0
)
?
sq1
/
abs
(
sq1
)
:
(
prod
-
s1
*
s2
/
N
)
/
sq1
/
sq2
;
double
ares
=
(
sq2
==
0
)
?
sq1
/
abs
(
sq1
)
:
(
prod
-
s1
*
s2
/
N
)
/
sq1
/
sq2
;
return
ares
;
return
ares
;
}
}
int
getMedian
(
const
std
::
vector
<
int
>&
values
,
int
size
)
int
getMedian
(
const
std
::
vector
<
int
>&
values
,
int
size
)
{
{
if
(
size
==
-
1
)
if
(
size
==
-
1
)
...
@@ -229,6 +227,7 @@ int getMedian(const std::vector<int>& values, int size)
...
@@ -229,6 +227,7 @@ int getMedian(const std::vector<int>& values, int size)
return
copy
[(
size
-
1
)
/
2
];
return
copy
[(
size
-
1
)
/
2
];
}
}
//Overlap between two BB
double
overlap
(
const
Rect2d
&
r1
,
const
Rect2d
&
r2
)
double
overlap
(
const
Rect2d
&
r1
,
const
Rect2d
&
r2
)
{
{
double
a1
=
r1
.
area
(),
a2
=
r2
.
area
(),
a0
=
(
r1
&
r2
).
area
();
double
a1
=
r1
.
area
(),
a2
=
r2
.
area
(),
a0
=
(
r1
&
r2
).
area
();
...
@@ -251,6 +250,7 @@ void resample(const Mat& img, const RotatedRect& r2, Mat_<uchar>& samples)
...
@@ -251,6 +250,7 @@ void resample(const Mat& img, const RotatedRect& r2, Mat_<uchar>& samples)
b
.
copyTo
(
M
.
colRange
(
Range
(
2
,
3
)));
b
.
copyTo
(
M
.
colRange
(
Range
(
2
,
3
)));
warpAffine
(
img
,
samples
,
M
,
samples
.
size
());
warpAffine
(
img
,
samples
,
M
,
samples
.
size
());
}
}
void
resample
(
const
Mat
&
img
,
const
Rect2d
&
r2
,
Mat_
<
uchar
>&
samples
)
void
resample
(
const
Mat
&
img
,
const
Rect2d
&
r2
,
Mat_
<
uchar
>&
samples
)
{
{
Mat_
<
float
>
M
(
2
,
3
);
Mat_
<
float
>
M
(
2
,
3
);
...
@@ -259,146 +259,5 @@ void resample(const Mat& img, const Rect2d& r2, Mat_<uchar>& samples)
...
@@ -259,146 +259,5 @@ void resample(const Mat& img, const Rect2d& r2, Mat_<uchar>& samples)
warpAffine
(
img
,
samples
,
M
,
samples
.
size
());
warpAffine
(
img
,
samples
,
M
,
samples
.
size
());
}
}
//other stuff
void
TLDEnsembleClassifier
::
stepPrefSuff
(
std
::
vector
<
Vec4b
>&
arr
,
int
pos
,
int
len
,
int
gridSize
)
{
#if 0
int step = len / (gridSize - 1), pref = (len - step * (gridSize - 1)) / 2;
for( int i = 0; i < (int)(sizeof(x1) / sizeof(x1[0])); i++ )
arr[i] = pref + arr[i] * step;
#else
int
total
=
len
-
gridSize
;
int
quo
=
total
/
(
gridSize
-
1
),
rem
=
total
%
(
gridSize
-
1
);
int
smallStep
=
quo
,
bigStep
=
quo
+
1
;
int
bigOnes
=
rem
,
smallOnes
=
gridSize
-
bigOnes
-
1
;
int
bigOnes_front
=
bigOnes
/
2
,
bigOnes_back
=
bigOnes
-
bigOnes_front
;
for
(
int
i
=
0
;
i
<
(
int
)
arr
.
size
();
i
++
)
{
if
(
arr
[
i
].
val
[
pos
]
<
bigOnes_back
)
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
arr
[
i
].
val
[
pos
]
*
bigStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
if
(
arr
[
i
].
val
[
pos
]
<
(
bigOnes_front
+
smallOnes
)
)
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
bigOnes_front
*
bigStep
+
(
arr
[
i
].
val
[
pos
]
-
bigOnes_front
)
*
smallStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
if
(
arr
[
i
].
val
[
pos
]
<
(
bigOnes_front
+
smallOnes
+
bigOnes_back
)
)
{
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
bigOnes_front
*
bigStep
+
smallOnes
*
smallStep
+
(
arr
[
i
].
val
[
pos
]
-
(
bigOnes_front
+
smallOnes
))
*
bigStep
+
arr
[
i
].
val
[
pos
]);
continue
;
}
arr
[
i
].
val
[
pos
]
=
(
uchar
)(
len
-
1
);
}
#endif
}
void
TLDEnsembleClassifier
::
prepareClassifier
(
int
rowstep
)
{
if
(
lastStep_
!=
rowstep
)
{
lastStep_
=
rowstep
;
for
(
int
i
=
0
;
i
<
(
int
)
offset
.
size
();
i
++
)
{
offset
[
i
].
x
=
rowstep
*
measurements
[
i
].
val
[
2
]
+
measurements
[
i
].
val
[
0
];
offset
[
i
].
y
=
rowstep
*
measurements
[
i
].
val
[
3
]
+
measurements
[
i
].
val
[
1
];
}
}
}
TLDEnsembleClassifier
::
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
)
:
lastStep_
(
-
1
)
{
int
posSize
=
1
,
mpc
=
end
-
beg
;
for
(
int
i
=
0
;
i
<
mpc
;
i
++
)
posSize
*=
2
;
posAndNeg
.
assign
(
posSize
,
Point2i
(
0
,
0
));
measurements
.
assign
(
meas
.
begin
()
+
beg
,
meas
.
begin
()
+
end
);
offset
.
assign
(
mpc
,
Point2i
(
0
,
0
));
}
void
TLDEnsembleClassifier
::
integrate
(
const
Mat_
<
uchar
>&
patch
,
bool
isPositive
)
{
int
position
=
code
(
patch
.
data
,
(
int
)
patch
.
step
[
0
]);
if
(
isPositive
)
posAndNeg
[
position
].
x
++
;
else
posAndNeg
[
position
].
y
++
;
}
double
TLDEnsembleClassifier
::
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
{
int
position
=
code
(
data
,
rowstep
);
double
posNum
=
(
double
)
posAndNeg
[
position
].
x
,
negNum
=
(
double
)
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
return
0.0
;
else
return
posNum
/
(
posNum
+
negNum
);
}
double
TLDEnsembleClassifier
::
posteriorProbabilityFast
(
const
uchar
*
data
)
const
{
int
position
=
codeFast
(
data
);
double
posNum
=
(
double
)
posAndNeg
[
position
].
x
,
negNum
=
(
double
)
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
return
0.0
;
else
return
posNum
/
(
posNum
+
negNum
);
}
int
TLDEnsembleClassifier
::
codeFast
(
const
uchar
*
data
)
const
{
int
position
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
measurements
.
size
();
i
++
)
{
position
=
position
<<
1
;
if
(
data
[
offset
[
i
].
x
]
<
data
[
offset
[
i
].
y
]
)
position
++
;
}
return
position
;
}
int
TLDEnsembleClassifier
::
code
(
const
uchar
*
data
,
int
rowstep
)
const
{
int
position
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
measurements
.
size
();
i
++
)
{
position
=
position
<<
1
;
if
(
*
(
data
+
rowstep
*
measurements
[
i
].
val
[
2
]
+
measurements
[
i
].
val
[
0
])
<
*
(
data
+
rowstep
*
measurements
[
i
].
val
[
3
]
+
measurements
[
i
].
val
[
1
])
)
{
position
++
;
}
}
return
position
;
}
int
TLDEnsembleClassifier
::
makeClassifiers
(
Size
size
,
int
measurePerClassifier
,
int
gridSize
,
std
::
vector
<
TLDEnsembleClassifier
>&
classifiers
)
{
std
::
vector
<
Vec4b
>
measurements
;
for
(
int
i
=
0
;
i
<
gridSize
;
i
++
)
{
for
(
int
j
=
0
;
j
<
gridSize
;
j
++
)
{
for
(
int
k
=
0
;
k
<
j
;
k
++
)
{
Vec4b
m
;
m
.
val
[
0
]
=
m
.
val
[
2
]
=
(
uchar
)
i
;
m
.
val
[
1
]
=
(
uchar
)
j
;
m
.
val
[
3
]
=
(
uchar
)
k
;
measurements
.
push_back
(
m
);
m
.
val
[
1
]
=
m
.
val
[
3
]
=
(
uchar
)
i
;
m
.
val
[
0
]
=
(
uchar
)
j
;
m
.
val
[
2
]
=
(
uchar
)
k
;
measurements
.
push_back
(
m
);
}
}
}
random_shuffle
(
measurements
.
begin
(),
measurements
.
end
());
stepPrefSuff
(
measurements
,
0
,
size
.
width
,
gridSize
);
stepPrefSuff
(
measurements
,
1
,
size
.
width
,
gridSize
);
stepPrefSuff
(
measurements
,
2
,
size
.
height
,
gridSize
);
stepPrefSuff
(
measurements
,
3
,
size
.
height
,
gridSize
);
for
(
int
i
=
0
,
howMany
=
(
int
)
measurements
.
size
()
/
measurePerClassifier
;
i
<
howMany
;
i
++
)
classifiers
.
push_back
(
TLDEnsembleClassifier
(
measurements
,
i
*
measurePerClassifier
,
(
i
+
1
)
*
measurePerClassifier
));
return
(
int
)
classifiers
.
size
();
}
}}
}}
modules/tracking/src/tldUtils.hpp
0 → 100644
View file @
26f16e64
#ifndef OPENCV_TLD_UTILS
#define OPENCV_TLD_UTILS
#include "precomp.hpp"
#include "opencv2/highgui.hpp"
namespace
cv
{
namespace
tld
{
//debug functions and variables
#define ALEX_DEBUG
#ifdef ALEX_DEBUG
#define dfprintf(x) fprintf x
#define dprintf(x) printf x
#else
#define dfprintf(x)
#define dprintf(x)
#endif
#define MEASURE_TIME(a)\
{\
clock_t start; float milisec = 0.0; \
start = clock(); {a} milisec = 1000.0 * (clock() - start) / CLOCKS_PER_SEC; \
dprintf(("%-90s took %f milis\n", #a, milisec));\
}
#define HERE dprintf(("line %d\n", __LINE__)); fflush(stderr);
#define START_TICK(name)\
{ \
clock_t start; double milisec = 0.0; start = clock();
#define END_TICK(name) milisec = 1000.0 * (clock() - start) / CLOCKS_PER_SEC; \
dprintf(("%s took %f milis\n", name, milisec)); \
}
extern
Rect2d
etalon
;
void
myassert
(
const
Mat
&
img
);
void
printPatch
(
const
Mat_
<
uchar
>&
standardPatch
);
std
::
string
type2str
(
const
Mat
&
mat
);
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
Rect2d
whiteOne
=
Rect2d
(
-
1.0
,
-
1.0
,
-
1.0
,
-
1.0
));
void
drawWithRects
(
const
Mat
&
img
,
std
::
vector
<
Rect2d
>&
blackOnes
,
std
::
vector
<
Rect2d
>&
whiteOnes
,
String
fileName
=
""
);
//aux functions and variables
template
<
typename
T
>
inline
T
CLIP
(
T
x
,
T
a
,
T
b
){
return
std
::
min
(
std
::
max
(
x
,
a
),
b
);
}
/** Computes overlap between the two given rectangles. Overlap is computed as ratio of rectangles' intersection to that
* of their union.*/
double
overlap
(
const
Rect2d
&
r1
,
const
Rect2d
&
r2
);
/** Resamples the area surrounded by r2 in img so it matches the size of samples, where it is written.*/
void
resample
(
const
Mat
&
img
,
const
RotatedRect
&
r2
,
Mat_
<
uchar
>&
samples
);
/** Specialization of resample() for rectangles without retation for better performance and simplicity.*/
void
resample
(
const
Mat
&
img
,
const
Rect2d
&
r2
,
Mat_
<
uchar
>&
samples
);
/** Computes the variance of single given image.*/
double
variance
(
const
Mat
&
img
);
/** Computes normalized corellation coefficient between the two patches (they should be
* of the same size).*/
double
NCC
(
const
Mat_
<
uchar
>&
patch1
,
const
Mat_
<
uchar
>&
patch2
);
void
getClosestN
(
std
::
vector
<
Rect2d
>&
scanGrid
,
Rect2d
bBox
,
int
n
,
std
::
vector
<
Rect2d
>&
res
);
double
scaleAndBlur
(
const
Mat
&
originalImg
,
int
scale
,
Mat
&
scaledImg
,
Mat
&
blurredImg
,
Size
GaussBlurKernelSize
,
double
scaleStep
);
int
getMedian
(
const
std
::
vector
<
int
>&
values
,
int
size
=
-
1
);
}
}
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment