Commit 265a7ad1 authored by Beat Küng's avatar Beat Küng

seeds: add C++ and python samples

parent 770a8b59
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/ximgproc.hpp>
#include <ctype.h>
#include <stdio.h>
#include <iostream>
using namespace cv;
using namespace cv::ximgproc;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates SEEDS superpixels using OpenCV class SuperpixelSEEDS\n"
"Use [space] to toggle output mode\n"
"\n"
"It captures either from the camera of your choice: 0, 1, ... default 0\n"
"Or from an input image\n"
"Call:\n"
"./seeds [camera #, default 0]\n"
"./seeds [input image file]\n" << endl;
}
static const char* window_name = "SEEDS Superpixels";
static bool init = false;
void trackbarChanged(int pos, void* data)
{
init = false;
}
int main(int argc, char** argv)
{
VideoCapture cap;
Mat input_image;
bool use_video_capture = false;
help();
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])) )
{
cap.open(argc == 2 ? argv[1][0] - '0' : 0);
use_video_capture = true;
}
else if( argc >= 2 )
{
input_image = imread(argv[1]);
}
if( use_video_capture )
{
if( !cap.isOpened() )
{
cout << "Could not initialize capturing...\n";
return -1;
}
}
else if( input_image.empty() )
{
cout << "Could not open image...\n";
return -1;
}
namedWindow(window_name, 0);
int num_iterations = 4;
int prior = 2;
bool double_step = false;
int num_superpixels = 400;
int num_levels = 4;
int num_histogram_bins = 5;
createTrackbar("Number of Superpixels", window_name, &num_superpixels, 1000, trackbarChanged);
createTrackbar("Smoothing Prior", window_name, &prior, 5, trackbarChanged);
createTrackbar("Number of Levels", window_name, &num_levels, 10, trackbarChanged);
createTrackbar("Iterations", window_name, &num_iterations, 12, 0);
Mat result, mask;
Ptr<SuperpixelSEEDS> seeds;
int width, height;
int display_mode = 0;
for (;;)
{
Mat frame;
if( use_video_capture )
cap >> frame;
else
input_image.copyTo(frame);
if( frame.empty() )
break;
if( !init )
{
width = frame.size().width;
height = frame.size().height;
seeds = createSuperpixelSEEDS(width, height, frame.channels(), num_superpixels,
num_levels, prior, num_histogram_bins, double_step);
init = true;
}
Mat converted;
cvtColor(frame, converted, COLOR_BGR2HSV);
double t = (double) getTickCount();
seeds->iterate(converted, num_iterations);
result = frame;
t = ((double) getTickCount() - t) / getTickFrequency();
printf("SEEDS segmentation took %i ms with %3i superpixels\n",
(int) (t * 1000), seeds->getNumberOfSuperpixels());
/* retrieve the segmentation result */
Mat labels;
seeds->getLabels(labels);
/* get the contours for displaying */
seeds->getLabelContourMask(mask, false);
result.setTo(Scalar(0, 0, 255), mask);
/* display output */
switch (display_mode)
{
case 0: //superpixel contours
imshow(window_name, result);
break;
case 1: //mask
imshow(window_name, mask);
break;
case 2: //labels array
{
// use the last x bit to determine the color. Note that this does not
// guarantee that 2 neighboring superpixels have different colors.
const int num_label_bits = 2;
labels &= (1 << num_label_bits) - 1;
labels *= 1 << (16 - num_label_bits);
imshow(window_name, labels);
}
break;
}
int c = waitKey(1);
if( (c & 255) == 'q' || c == 'Q' || (c & 255) == 27 )
break;
else if( (c & 255) == ' ' )
display_mode = (display_mode + 1) % 3;
}
return 0;
}
#!/usr/bin/env python
'''
This module contains some common routines used by other samples.
'''
import numpy as np
import cv2
# built-in modules
import os
import itertools as it
from contextlib import contextmanager
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
class Bunch(object):
def __init__(self, **kw):
self.__dict__.update(kw)
def __str__(self):
return str(self.__dict__)
def splitfn(fn):
path, fn = os.path.split(fn)
name, ext = os.path.splitext(fn)
return path, name, ext
def anorm2(a):
return (a*a).sum(-1)
def anorm(a):
return np.sqrt( anorm2(a) )
def homotrans(H, x, y):
xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
return xs/s, ys/s
def to_rect(a):
a = np.ravel(a)
if len(a) == 2:
a = (0, 0, a[0], a[1])
return np.array(a, np.float64).reshape(2, 2)
def rect2rect_mtx(src, dst):
src, dst = to_rect(src), to_rect(dst)
cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
tx, ty = dst[0] - src[0] * (cx, cy)
M = np.float64([[ cx, 0, tx],
[ 0, cy, ty],
[ 0, 0, 1]])
return M
def lookat(eye, target, up = (0, 0, 1)):
fwd = np.asarray(target, np.float64) - eye
fwd /= anorm(fwd)
right = np.cross(fwd, up)
right /= anorm(right)
down = np.cross(fwd, right)
R = np.float64([right, down, fwd])
tvec = -np.dot(R, eye)
return R, tvec
def mtx2rvec(R):
w, u, vt = cv2.SVDecomp(R - np.eye(3))
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
c = np.dot(vt[0], p)
s = np.dot(vt[1], p)
axis = np.cross(vt[0], vt[1])
return axis * np.arctan2(s, c)
def draw_str(dst, (x, y), s):
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
class Sketcher:
def __init__(self, windowname, dests, colors_func):
self.prev_pt = None
self.windowname = windowname
self.dests = dests
self.colors_func = colors_func
self.dirty = False
self.show()
cv2.setMouseCallback(self.windowname, self.on_mouse)
def show(self):
cv2.imshow(self.windowname, self.dests[0])
def on_mouse(self, event, x, y, flags, param):
pt = (x, y)
if event == cv2.EVENT_LBUTTONDOWN:
self.prev_pt = pt
elif event == cv2.EVENT_LBUTTONUP:
self.prev_pt = None
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
for dst, color in zip(self.dests, self.colors_func()):
cv2.line(dst, self.prev_pt, pt, color, 5)
self.dirty = True
self.prev_pt = pt
self.show()
# palette data from matplotlib/_cm.py
_jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
(1, 0.5, 0.5)),
'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
(0.91,0,0), (1, 0, 0)),
'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
(1, 0, 0))}
cmap_data = { 'jet' : _jet_data }
def make_cmap(name, n=256):
data = cmap_data[name]
xs = np.linspace(0.0, 1.0, n)
channels = []
eps = 1e-6
for ch_name in ['blue', 'green', 'red']:
ch_data = data[ch_name]
xp, yp = [], []
for x, y1, y2 in ch_data:
xp += [x, x+eps]
yp += [y1, y2]
ch = np.interp(xs, xp, yp)
channels.append(ch)
return np.uint8(np.array(channels).T*255)
def nothing(*arg, **kw):
pass
def clock():
return cv2.getTickCount() / cv2.getTickFrequency()
@contextmanager
def Timer(msg):
print msg, '...',
start = clock()
try:
yield
finally:
print "%.2f ms" % ((clock()-start)*1000)
class StatValue:
def __init__(self, smooth_coef = 0.5):
self.value = None
self.smooth_coef = smooth_coef
def update(self, v):
if self.value is None:
self.value = v
else:
c = self.smooth_coef
self.value = c * self.value + (1.0-c) * v
class RectSelector:
def __init__(self, win, callback):
self.win = win
self.callback = callback
cv2.setMouseCallback(win, self.onmouse)
self.drag_start = None
self.drag_rect = None
def onmouse(self, event, x, y, flags, param):
x, y = np.int16([x, y]) # BUG
if event == cv2.EVENT_LBUTTONDOWN:
self.drag_start = (x, y)
if self.drag_start:
if flags & cv2.EVENT_FLAG_LBUTTON:
xo, yo = self.drag_start
x0, y0 = np.minimum([xo, yo], [x, y])
x1, y1 = np.maximum([xo, yo], [x, y])
self.drag_rect = None
if x1-x0 > 0 and y1-y0 > 0:
self.drag_rect = (x0, y0, x1, y1)
else:
rect = self.drag_rect
self.drag_start = None
self.drag_rect = None
if rect:
self.callback(rect)
def draw(self, vis):
if not self.drag_rect:
return False
x0, y0, x1, y1 = self.drag_rect
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
return True
@property
def dragging(self):
return self.drag_rect is not None
def grouper(n, iterable, fillvalue=None):
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
args = [iter(iterable)] * n
return it.izip_longest(fillvalue=fillvalue, *args)
def mosaic(w, imgs):
'''Make a grid from images.
w -- number of grid columns
imgs -- images (must have same size and format)
'''
imgs = iter(imgs)
img0 = imgs.next()
pad = np.zeros_like(img0)
imgs = it.chain([img0], imgs)
rows = grouper(w, imgs, pad)
return np.vstack(map(np.hstack, rows))
def getsize(img):
h, w = img.shape[:2]
return w, h
def mdot(*args):
return reduce(np.dot, args)
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
for kp in keypoints:
x, y = kp.pt
cv2.circle(vis, (int(x), int(y)), 2, color)
#!/usr/bin/env python
'''
This sample demonstrates SEEDS Superpixels segmentation
Use [space] to toggle output mode
Usage:
seeds.py [<video source>]
'''
import numpy as np
import cv2
# relative module
import video
# built-in module
import sys
if __name__ == '__main__':
print __doc__
try:
fn = sys.argv[1]
except:
fn = 0
def nothing(*arg):
pass
cv2.namedWindow('SEEDS')
cv2.createTrackbar('Number of Superpixels', 'SEEDS', 400, 1000, nothing)
cv2.createTrackbar('Iterations', 'SEEDS', 4, 12, nothing)
seeds = None
display_mode = 0
num_superpixels = 400
prior = 2
num_levels = 4
num_histogram_bins = 5
cap = video.create_capture(fn)
while True:
flag, img = cap.read()
converted_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
height,width,channels = converted_img.shape
num_superpixels_new = cv2.getTrackbarPos('Number of Superpixels', 'SEEDS')
num_iterations = cv2.getTrackbarPos('Iterations', 'SEEDS')
if not seeds or num_superpixels_new != num_superpixels:
num_superpixels = num_superpixels_new
seeds = cv2.ximgproc.createSuperpixelSEEDS(width, height, channels,
num_superpixels, num_levels, prior, num_histogram_bins)
color_img = np.zeros((height,width,3), np.uint8)
color_img[:] = (0, 0, 255)
seeds.iterate(converted_img, num_iterations)
# retrieve the segmentation result
labels = seeds.getLabels()
# labels output: use the last x bits to determine the color
num_label_bits = 2
labels &= (1<<num_label_bits)-1
labels *= 1<<(16-num_label_bits)
mask = seeds.getLabelContourMask(False)
# stitch foreground & background together
mask_inv = cv2.bitwise_not(mask)
result_bg = cv2.bitwise_and(img, img, mask=mask_inv)
result_fg = cv2.bitwise_and(color_img, color_img, mask=mask)
result = cv2.add(result_bg, result_fg)
if display_mode == 0:
cv2.imshow('SEEDS', result)
elif display_mode == 1:
cv2.imshow('SEEDS', mask)
else:
cv2.imshow('SEEDS', labels)
ch = cv2.waitKey(1)
if ch == 27:
break
elif ch & 0xff == ord(' '):
display_mode = (display_mode + 1) % 3
cv2.destroyAllWindows()
#!/usr/bin/env python
'''
Video capture sample.
Sample shows how VideoCapture class can be used to acquire video
frames from a camera of a movie file. Also the sample provides
an example of procedural video generation by an object, mimicking
the VideoCapture interface (see Chess class).
'create_capture' is a convinience function for capture creation,
falling back to procedural video in case of error.
Usage:
video.py [--shotdir <shot path>] [source0] [source1] ...'
sourceN is an
- integer number for camera capture
- name of video file
- synth:<params> for procedural video
Synth examples:
synth:bg=../cpp/lena.jpg:noise=0.1
synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480
Keys:
ESC - exit
SPACE - save current frame to <shot path> directory
'''
import numpy as np
from numpy import pi, sin, cos
import cv2
# built-in modules
from time import clock
# local modules
import common
class VideoSynthBase(object):
def __init__(self, size=None, noise=0.0, bg = None, **params):
self.bg = None
self.frame_size = (640, 480)
if bg is not None:
self.bg = cv2.imread(bg, 1)
h, w = self.bg.shape[:2]
self.frame_size = (w, h)
if size is not None:
w, h = map(int, size.split('x'))
self.frame_size = (w, h)
self.bg = cv2.resize(self.bg, self.frame_size)
self.noise = float(noise)
def render(self, dst):
pass
def read(self, dst=None):
w, h = self.frame_size
if self.bg is None:
buf = np.zeros((h, w, 3), np.uint8)
else:
buf = self.bg.copy()
self.render(buf)
if self.noise > 0.0:
noise = np.zeros((h, w, 3), np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3)
return True, buf
def isOpened(self):
return True
class Chess(VideoSynthBase):
def __init__(self, **kw):
super(Chess, self).__init__(**kw)
w, h = self.frame_size
self.grid_size = sx, sy = 10, 7
white_quads = []
black_quads = []
for i, j in np.ndindex(sy, sx):
q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]]
[white_quads, black_quads][(i + j) % 2].append(q)
self.white_quads = np.float32(white_quads)
self.black_quads = np.float32(black_quads)
fx = 0.9
self.K = np.float64([[fx*w, 0, 0.5*(w-1)],
[0, fx*w, 0.5*(h-1)],
[0.0,0.0, 1.0]])
self.dist_coef = np.float64([-0.2, 0.1, 0, 0])
self.t = 0
def draw_quads(self, img, quads, color = (0, 255, 0)):
img_quads = cv2.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0]
img_quads.shape = quads.shape[:2] + (2,)
for q in img_quads:
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.LINE_AA, shift=2)
def render(self, dst):
t = self.t
self.t += 1.0/30.0
sx, sy = self.grid_size
center = np.array([0.5*sx, 0.5*sy, 0.0])
phi = pi/3 + sin(t*3)*pi/8
c, s = cos(phi), sin(phi)
ofs = np.array([sin(1.2*t), cos(1.8*t), 0]) * sx * 0.2
eye_pos = center + np.array([cos(t)*c, sin(t)*c, s]) * 15.0 + ofs
target_pos = center + ofs
R, self.tvec = common.lookat(eye_pos, target_pos)
self.rvec = common.mtx2rvec(R)
self.draw_quads(dst, self.white_quads, (245, 245, 245))
self.draw_quads(dst, self.black_quads, (10, 10, 10))
classes = dict(chess=Chess)
presets = dict(
empty = 'synth:',
lena = 'synth:bg=../cpp/lena.jpg:noise=0.1',
chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480'
)
def create_capture(source = 0, fallback = presets['chess']):
'''source: <int> or '<int>|<filename>|synth [:<param_name>=<value> [:...]]'
'''
source = str(source).strip()
chunks = source.split(':')
# handle drive letter ('c:', ...)
if len(chunks) > 1 and len(chunks[0]) == 1 and chunks[0].isalpha():
chunks[1] = chunks[0] + ':' + chunks[1]
del chunks[0]
source = chunks[0]
try: source = int(source)
except ValueError: pass
params = dict( s.split('=') for s in chunks[1:] )
cap = None
if source == 'synth':
Class = classes.get(params.get('class', None), VideoSynthBase)
try: cap = Class(**params)
except: pass
else:
cap = cv2.VideoCapture(source)
if 'size' in params:
w, h = map(int, params['size'].split('x'))
cap.set(cv2.CAP_PROP_FRAME_WIDTH, w)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, h)
if cap is None or not cap.isOpened():
print 'Warning: unable to open video source: ', source
if fallback is not None:
return create_capture(fallback, None)
return cap
if __name__ == '__main__':
import sys
import getopt
print __doc__
args, sources = getopt.getopt(sys.argv[1:], '', 'shotdir=')
args = dict(args)
shotdir = args.get('--shotdir', '.')
if len(sources) == 0:
sources = [ 0 ]
caps = map(create_capture, sources)
shot_idx = 0
while True:
imgs = []
for i, cap in enumerate(caps):
ret, img = cap.read()
imgs.append(img)
cv2.imshow('capture %d' % i, img)
ch = 0xFF & cv2.waitKey(1)
if ch == 27:
break
if ch == ord(' '):
for i, img in enumerate(imgs):
fn = '%s/shot_%d_%03d.bmp' % (shotdir, i, shot_idx)
cv2.imwrite(fn, img)
print fn, 'saved'
shot_idx += 1
cv2.destroyAllWindows()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment