Commit 264dfe0c authored by Anna Petrovicheva's avatar Anna Petrovicheva

Added DetectionOutput implementation

parent 1f6883c1
/*M ///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "detection_output_layer.hpp"
#include <float.h>
#include <algorithm>
namespace cv
{
namespace dnn
{
void DetectionOutputLayer::checkParameter(const LayerParams &params,
const std::string &parameterName)
{
if (!params.has(parameterName))
{
CV_Error(Error::StsBadArg,
"DetectionOutput layer parameter does not contain " +
parameterName + " index.");
}
}
DetectionOutputLayer::DetectionOutputLayer(LayerParams &params) : Layer(params)
{
checkParameter(params, "numClasses");
_numClasses = params.num_classes();
_shareLocation = params.share_location();
_numLocClasses = _shareLocation ? 1 : _numClasses;
_backgroundLabelId = params.background_label_id();
_codeType = params.code_type();
_varianceEncodedInTarget = params.variance_encoded_in_target();
_keepTopK = params.keep_top_k();
_confidenceThreshold = params.has_confidence_threshold() ?
params.confidence_threshold() : -FLT_MAX;
// Parameters used in nms.
_nmsThreshold = params.nms_param().nms_threshold();
CV_Assert(_nmsThreshold > 0.);
_topK = -1;
if (params.nms_param().has_top_k())
{
_topK = params.nms_param().top_k();
}
}
void DetectionOutputLayer::checkInputs(const std::vector<Blob*> &inputs)
{
for (size_t i = 0; i < inputs.size(); i++)
{
for (size_t j = 0; j < _numAxes; j++)
{
CV_Assert(inputs[i]->shape[j] == inputs[0]->shape[j]);
}
}
}
void DetectionOutputLayer::allocate(const std::vector<Blob*> &inputs,
std::vector<Blob> &outputs)
{
CV_Assert(inputs.size() > 0);
CV_Assert(inputs[0]->num() == inputs[1]->num());
_num = inputs[0]->num();
_numPriors = inputs[2]->height() / 4;
CV_Assert(_numPriors * _numLocClasses * 4 == inputs[0]->channels());
CV_Assert(_numPriors * _numClasses == inputs[1]->channels());
// num() and channels() are 1.
// Since the number of bboxes to be kept is unknown before nms, we manually
// set it to (fake) 1.
// Each row is a 7 dimension std::vector, which stores
// [image_id, label, confidence, xmin, ymin, xmax, ymax]
BlobShape outputShape = BlobShape(1, 1, 1, 7);
outputs[0].create(BlobShape(outputShape));
}
void DetectionOutputLayer::forward(std::vector<Blob*> &inputs,
std::vector<Blob> &outputs)
{
const Mat locationData = inputs[0]->ptrf();
const Mat confidenceData = inputs[1]->ptrf();
const Mat priorData = inputs[2]->ptrf();
// Retrieve all location predictions.
std::vector<LabelBBox> allLocationPredictions;
GetLocPredictions(locationData, _num, _numPriors, _numLocClasses,
_shareLocation, &allLocationPredictions);
// Retrieve all confidences.
std::vector<std::map<int, std::vector<float> > > allConfidenceScores;
GetConfidenceScores(confidenceData, _num, _numPriors, _numClasses,
&allConfidenceScores);
// Retrieve all prior bboxes. It is same within a batch since we assume all
// images in a batch are of same dimension.
std::vector<NormalizedBBox> priorBBoxes;
std::vector<std::vector<float> > priorVariances;
GetPriorBBoxes(priorData, _numPriors, &priorBBoxes, &priorVariances);
// Decode all loc predictions to bboxes.
std::vector<LabelBBox> allDecodedBBoxes;
DecodeBBoxesAll(allLocationPredictions, priorBBoxes, priorVariances, _num,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, &allDecodedBBoxes);
int numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < _num; ++i)
{
const LabelBBox& decodeBBoxes = allDecodedBBoxes[i];
const std::map<int, std::vector<float> >& confidenceScores =
allConfidenceScores[i];
std::map<int, std::vector<int> > indices;
int numDetections = 0;
for (int c = 0; c < _numClasses; ++c)
{
if (c == _backgroundLabelId)
{
// Ignore background class.
continue;
}
if (confidenceScores.find(c) == confidenceScores.end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find confidence predictions for label ");
error += std::string(c);
CV_StsError(error.c_str());
}
const std::vector<float>& scores = confidenceScores.find(c)->second;
int label = _shareLocation ? -1 : c;
if (decodeBBoxes.find(label) == decodeBBoxes.end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find location predictions for label ");
error += std::string(label);
CV_StsError(error.c_str());
continue;
}
const std::vector<NormalizedBBox>& bboxes =
decodeBBoxes.find(label)->second;
ApplyNMSFast(bboxes, scores, _confidenceThreshold, _nmsThreshold,
_topK, &(indices[c]));
numDetections += indices[c].size();
}
if (_keepTopK > -1 && numDetections > _keepTopK)
{
std::vector<std::pair<float, std::pair<int, int> > > scoreIndexPairs;
for (std::map<int, std::vector<int> >::iterator it = indices.begin();
it != indices.end(); ++it)
{
int label = it->first;
const std::vector<int>& labelIndices = it->second;
if (confidenceScores.find(label) == confidenceScores.end())
{
// Something bad happened for current label.
std::string error("Could not find location predictions for label ");
error += std::string(label);
CV_StsError(error.c_str());
continue;
}
const std::vector<float>& scores =
confidenceScores.find(label)->second;
for (int j = 0; j < labelIndices.size(); ++j)
{
int idx = labelIndices[j];
CV_Assert(idx < scores.size());
scoreIndexPairs.push_back(
std::make_pair(scores[idx], std::make_pair(label, idx)));
}
}
// Keep outputs k results per image.
std::sort(scoreIndexPairs.begin(), scoreIndexPairs.end(),
SortScorePairDescend<std::pair<int, int> >);
scoreIndexPairs.resize(_keepTopK);
// Store the new indices.
std::map<int, std::vector<int> > newIndices;
for (int j = 0; j < scoreIndexPairs.size(); ++j)
{
int label = scoreIndexPairs[j].second.first;
int idx = scoreIndexPairs[j].second.second;
newIndices[label].push_back(idx);
}
allIndices.push_back(newIndices);
numKept += _keepTopK;
}
else
{
allIndices.push_back(indices);
numKept += numDetections;
}
}
if (numKept == 0)
{
std::cout << "Couldn't find any detections" << std::endl;
return;
}
std::vector<int> outputsShape(2, 1);
outputsShape.push_back(numKept);
outputsShape.push_back(7);
outputs[0]->reshape(outputsShape);
float* outputsData = outputs[0]->ptrf();
int count = 0;
for (int i = 0; i < _num; ++i)
{
const std::map<int, std::vector<float> >& confidenceScores =
allConfidenceScores[i];
const LabelBBox& decodeBBoxes = allDecodedBBoxes[i];
for (std::map<int, std::vector<int> >::iterator it = allIndices[i].begin();
it != allIndices[i].end(); ++it)
{
int label = it->first;
if (confidenceScores.find(label) == confidenceScores.end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find confidence predictions for label ");
error += std::string(label);
CV_StsError(error.c_str());
continue;
}
const std::vector<float>& scores = confidenceScores.find(label)->second;
int locLabel = _shareLocation ? -1 : label;
if (decodeBBoxes.find(locLabel) == decodeBBoxes.end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find location predictions for label ");
error += std::string(locLabel);
CV_StsError(error.c_str());
continue;
}
const std::vector<NormalizedBBox>& bboxes =
decodeBBoxes.find(locLabel)->second;
std::vector<int>& indices = it->second;
for (int j = 0; j < indices.size(); ++j)
{
int idx = indices[j];
outputsData[count * 7] = i;
outputsData[count * 7 + 1] = label;
outputsData[count * 7 + 2] = scores[idx];
NormalizedBBox clipBBox;
ClipBBox(bboxes[idx], &clipBBox);
outputsData[count * 7 + 3] = clipBBox.xmin();
outputsData[count * 7 + 4] = clipBBox.ymin();
outputsData[count * 7 + 5] = clipBBox.xmax();
outputsData[count * 7 + 6] = clipBBox.ymax();
++count;
}
}
}
}
float DetectionOutputLayer::BBoxSize(const NormalizedBBox& bbox,
const bool normalized)
{
if (bbox.xmax() < bbox.xmin() || bbox.ymax() < bbox.ymin())
{
// If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
return 0;
}
else
{
if (bbox.has_size())
{
return bbox.size();
}
else
{
float width = bbox.xmax() - bbox.xmin();
float height = bbox.ymax() - bbox.ymin();
if (normalized)
{
return width * height;
}
else
{
// If bbox is not within range [0, 1].
return (width + 1) * (height + 1);
}
}
}
}
void DetectionOutputLayer::ClipBBox(const NormalizedBBox& bbox,
NormalizedBBox* clipBBox)
{
clipBBox->set_xmin(std::max(std::min(bbox.xmin(), 1.f), 0.f));
clipBBox->set_ymin(std::max(std::min(bbox.ymin(), 1.f), 0.f));
clipBBox->set_xmax(std::max(std::min(bbox.xmax(), 1.f), 0.f));
clipBBox->set_ymax(std::max(std::min(bbox.ymax(), 1.f), 0.f));
clipBBox->clear_size();
clipBBox->set_size(BBoxSize(*clipBBox));
clipBBox->set_difficult(bbox.difficult());
}
void DetectionOutputLayer::DecodeBBox(
const NormalizedBBox& priorBBox, const std::vector<float>& priorVariance,
const CodeType codeType, const bool varianceEncodedInTarget,
const NormalizedBBox& bbox, NormalizedBBox* decodeBBox)
{
if (codeType == PriorBoxParameter_CodeType_CORNER)
{
if (varianceEncodedInTarget)
{
// variance is encoded in target, we simply need to add the offset
// predictions.
decodeBBox->set_xmin(priorBBox.xmin() + bbox.xmin());
decodeBBox->set_ymin(priorBBox.ymin() + bbox.ymin());
decodeBBox->set_xmax(priorBBox.xmax() + bbox.xmax());
decodeBBox->set_ymax(priorBBox.ymax() + bbox.ymax());
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decodeBBox->set_xmin(
priorBBox.xmin() + priorVariance[0] * bbox.xmin());
decodeBBox->set_ymin(
priorBBox.ymin() + priorVariance[1] * bbox.ymin());
decodeBBox->set_xmax(
priorBBox.xmax() + priorVariance[2] * bbox.xmax());
decodeBBox->set_ymax(
priorBBox.ymax() + priorVariance[3] * bbox.ymax());
}
}
else
if (codeType == PriorBoxParameter_CodeType_CENTER_SIZE)
{
float priorWidth = priorBBox.xmax() - priorBBox.xmin();
CV_Assert(priorWidth > 0);
float priorHeight = priorBBox.ymax() - priorBBox.ymin();
CV_Assert(priorHeight > 0);
float priorCenterX = (priorBBox.xmin() + priorBBox.xmax()) / 2.;
float priorCenterY = (priorBBox.ymin() + priorBBox.ymax()) / 2.;
float decodeBBoxCenterX, decodeBBoxCenterY;
float decodeBBoxWidth, decodeBBoxHeight;
if (varianceEncodedInTarget)
{
// variance is encoded in target, we simply need to retore the offset
// predictions.
decodeBBoxCenterX = bbox.xmin() * priorWidth + priorCenterX;
decodeBBoxCenterY = bbox.ymin() * priorHeight + priorCenterY;
decodeBBoxWidth = exp(bbox.xmax()) * priorWidth;
decodeBBoxHeight = exp(bbox.ymax()) * priorHeight;
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decodeBBoxCenterX =
priorVariance[0] * bbox.xmin() * priorWidth + priorCenterX;
decodeBBoxCenterY =
priorVariance[1] * bbox.ymin() * priorHeight + priorCenterY;
decodeBBoxWidth =
exp(priorVariance[2] * bbox.xmax()) * priorWidth;
decodeBBoxHeight =
exp(priorVariance[3] * bbox.ymax()) * priorHeight;
}
decodeBBox->set_xmin(decodeBBoxCenterX - decodeBBoxWidth / 2.);
decodeBBox->set_ymin(decodeBBoxCenterY - decodeBBoxHeight / 2.);
decodeBBox->set_xmax(decodeBBoxCenterX + decodeBBoxWidth / 2.);
decodeBBox->set_ymax(decodeBBoxCenterY + decodeBBoxHeight / 2.);
}
else
{
CV_StsError("Unknown LocLossType.");
}
float bboxSize = BBoxSize(*decodeBBox);
decodeBBox->set_size(bboxSize);
}
void DetectionOutputLayer::DecodeBBoxes(
const std::vector<NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const CodeType codeType, const bool varianceEncodedInTarget,
const std::vector<NormalizedBBox>& bboxes,
std::vector<NormalizedBBox>* decodeBBoxes)
{
CV_Assert(priorBBoxes.size() == priorVariances.size());
CV_Assert(priorBBoxes.size() == bboxes.size());
int numBBoxes = priorBBoxes.size();
if (numBBoxes >= 1)
{
CV_Assert(priorVariances[0].size() == 4);
}
decodeBBoxes->clear();
for (int i = 0; i < numBBoxes; ++i)
{
NormalizedBBox decodeBBox;
DecodeBBox(priorBBoxes[i], priorVariances[i], codeType,
varianceEncodedInTarget, bboxes[i], &decodeBBox);
decodeBBoxes->push_back(decodeBBox);
}
}
void DetectionOutputLayer::DecodeBBoxesAll(
const std::vector<LabelBBox>& allLocPreds,
const std::vector<NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const int num, const bool shareLocation,
const int numLocClasses, const int backgroundLabelId,
const CodeType codeType, const bool varianceEncodedInTarget,
std::vector<LabelBBox>* allDecodeBBoxes)
{
CV_Assert(allLocPreds.size() == num);
allDecodeBBoxes->clear();
allDecodeBBoxes->resize(num);
for (int i = 0; i < num; ++i)
{
// Decode predictions into bboxes.
LabelBBox& decodeBBoxes = (*allDecodeBBoxes)[i];
for (int c = 0; c < numLocClasses; ++c)
{
int label = shareLocation ? -1 : c;
if (label == backgroundLabelId)
{
// Ignore background class.
continue;
}
if (allLocPreds[i].find(label) == allLocPreds[i].end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find location predictions for label ");
error += std::string(label);
CV_StsError(error.c_str());
}
const std::vector<NormalizedBBox>& labelLocPreds =
allLocPreds[i].find(label)->second;
DecodeBBoxes(priorBBoxes, priorVariances,
codeType, varianceEncodedInTarget,
labelLocPreds, &(decodeBBoxes[label]));
}
}
}
void DetectionOutputLayer::GetPriorBBoxes(
const float* priorData, const int numPriors,
std::vector<NormalizedBBox>* priorBBoxes,
std::vector<std::vector<float> >* priorVariances)
{
priorBBoxes->clear();
priorVariances->clear();
for (int i = 0; i < numPriors; ++i)
{
int startIdx = i * 4;
NormalizedBBox bbox;
bbox.set_xmin(priorData[startIdx]);
bbox.set_ymin(priorData[startIdx + 1]);
bbox.set_xmax(priorData[startIdx + 2]);
bbox.set_ymax(priorData[startIdx + 3]);
float bboxSize = BBoxSize(bbox);
bbox.set_size(bboxSize);
priorBBoxes->push_back(bbox);
}
for (int i = 0; i < numPriors; ++i)
{
int startIdx = (numPriors + i) * 4;
std::vector<float> var;
for (int j = 0; j < 4; ++j)
{
var.push_back(priorData[startIdx + j]);
}
priorVariances->push_back(var);
}
}
void DetectionOutputLayer::ScaleBBox(const NormalizedBBox& bbox,
const int height, const int width,
NormalizedBBox* scaleBBox)
{
scaleBBox->set_xmin(bbox.xmin() * width);
scaleBBox->set_ymin(bbox.ymin() * height);
scaleBBox->set_xmax(bbox.xmax() * width);
scaleBBox->set_ymax(bbox.ymax() * height);
scaleBBox->clear_size();
bool normalized = !(width > 1 || height > 1);
scaleBBox->set_size(BBoxSize(*scaleBBox, normalized));
scaleBBox->set_difficult(bbox.difficult());
}
void DetectionOutputLayer::GetLocPredictions(
const float* locData, const int num,
const int numPredsPerClass, const int numLocClasses,
const bool shareLocation, std::vector<LabelBBox>* locPreds)
{
locPreds->clear();
if (shareLocation)
{
CV_Assert(numLocClasses == 1);
}
locPreds->resize(num);
for (int i = 0; i < num; ++i)
{
LabelBBox& labelBBox = (*locPreds)[i];
for (int p = 0; p < numPredsPerClass; ++p)
{
int startIdx = p * numLocClasses * 4;
for (int c = 0; c < numLocClasses; ++c)
{
int label = shareLocation ? -1 : c;
if (labelBBox.find(label) == labelBBox.end())
{
labelBBox[label].resize(numPredsPerClass);
}
labelBBox[label][p].set_xmin(locData[startIdx + c * 4]);
labelBBox[label][p].set_ymin(locData[startIdx + c * 4 + 1]);
labelBBox[label][p].set_xmax(locData[startIdx + c * 4 + 2]);
labelBBox[label][p].set_ymax(locData[startIdx + c * 4 + 3]);
}
}
locData += numPredsPerClass * numLocClasses * 4;
}
}
void DetectionOutputLayer::GetConfidenceScores(
const float* confData, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<std::map<int, std::vector<float> > >* confPreds)
{
confPreds->clear();
confPreds->resize(num);
for (int i = 0; i < num; ++i)
{
std::map<int, std::vector<float> >& labelScores = (*confPreds)[i];
for (int p = 0; p < numPredsPerClass; ++p)
{
int startIdx = p * numClasses;
for (int c = 0; c < numClasses; ++c)
{
labelScores[c].push_back(confData[startIdx + c]);
}
}
confData += numPredsPerClass * numClasses;
}
}
void DetectionOutputLayer::DecodeBBox(
const NormalizedBBox& prior_bbox, const vector<float>& prior_variance,
const CodeType code_type, const bool variance_encoded_in_target,
const NormalizedBBox& bbox, NormalizedBBox* decode_bbox) {
if (code_type == PriorBoxParameter_CodeType_CORNER)
{
if (variance_encoded_in_target)
{
// variance is encoded in target, we simply need to add the offset
// predictions.
decode_bbox->set_xmin(prior_bbox.xmin() + bbox.xmin());
decode_bbox->set_ymin(prior_bbox.ymin() + bbox.ymin());
decode_bbox->set_xmax(prior_bbox.xmax() + bbox.xmax());
decode_bbox->set_ymax(prior_bbox.ymax() + bbox.ymax());
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox->set_xmin(
prior_bbox.xmin() + prior_variance[0] * bbox.xmin());
decode_bbox->set_ymin(
prior_bbox.ymin() + prior_variance[1] * bbox.ymin());
decode_bbox->set_xmax(
prior_bbox.xmax() + prior_variance[2] * bbox.xmax());
decode_bbox->set_ymax(
prior_bbox.ymax() + prior_variance[3] * bbox.ymax());
}
}
else
if (code_type == PriorBoxParameter_CodeType_CENTER_SIZE)
{
float prior_width = prior_bbox.xmax() - prior_bbox.xmin();
CHECK_GT(prior_width, 0);
float prior_height = prior_bbox.ymax() - prior_bbox.ymin();
CHECK_GT(prior_height, 0);
float prior_center_x = (prior_bbox.xmin() + prior_bbox.xmax()) / 2.;
float prior_center_y = (prior_bbox.ymin() + prior_bbox.ymax()) / 2.;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;
if (variance_encoded_in_target)
{
// variance is encoded in target, we simply need to retore the offset
// predictions.
decode_bbox_center_x = bbox.xmin() * prior_width + prior_center_x;
decode_bbox_center_y = bbox.ymin() * prior_height + prior_center_y;
decode_bbox_width = exp(bbox.xmax()) * prior_width;
decode_bbox_height = exp(bbox.ymax()) * prior_height;
}
else
{
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox_center_x =
prior_variance[0] * bbox.xmin() * prior_width + prior_center_x;
decode_bbox_center_y =
prior_variance[1] * bbox.ymin() * prior_height + prior_center_y;
decode_bbox_width =
exp(prior_variance[2] * bbox.xmax()) * prior_width;
decode_bbox_height =
exp(prior_variance[3] * bbox.ymax()) * prior_height;
}
decode_bbox->set_xmin(decode_bbox_center_x - decode_bbox_width / 2.);
decode_bbox->set_ymin(decode_bbox_center_y - decode_bbox_height / 2.);
decode_bbox->set_xmax(decode_bbox_center_x + decode_bbox_width / 2.);
decode_bbox->set_ymax(decode_bbox_center_y + decode_bbox_height / 2.);
}
else
{
LOG(FATAL) << "Unknown LocLossType.";
}
float bbox_size = BBoxSize(*decode_bbox);
decode_bbox->set_size(bbox_size);
}
void DetectionOutputLayer::DecodeBBoxes(
const std::vector<NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const CodeType code_type, const bool variance_encoded_in_target,
const std::vector<NormalizedBBox>& bboxes,
std::vector<NormalizedBBox>* decode_bboxes)
{
CV_Assert(priorBBoxes.size() == priorVariances.size());
CV_Assert(priorBBoxes.size() == bboxes.size());
int num_bboxes = priorBBoxes.size();
if (num_bboxes >= 1)
{
CV_Assert(priorVariances[0].size() == 4);
}
decode_bboxes->clear();
for (int i = 0; i < num_bboxes; ++i)
{
NormalizedBBox decode_bbox;
DecodeBBox(priorBBoxes[i], priorVariances[i], code_type,
variance_encoded_in_target, bboxes[i], &decode_bbox);
decode_bboxes->push_back(decode_bbox);
}
}
void DetectionOutputLayer::DecodeBBoxesAll(
const std::vector<LabelBBox>& all_loc_preds,
const std::vector<NormalizedBBox>& priorBBoxes,
const std::vector<std::vector<float> >& priorVariances,
const int num, const bool share_location,
const int num_loc_classes, const int background_label_id,
const CodeType code_type, const bool variance_encoded_in_target,
std::vector<LabelBBox>* all_decode_bboxes)
{
CV_Assert(all_loc_preds.size() == num);
all_decode_bboxes->clear();
all_decode_bboxes->resize(num);
for (int i = 0; i < num; ++i)
{
// Decode predictions into bboxes.
LabelBBox& decode_bboxes = (*all_decode_bboxes)[i];
for (int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
if (label == background_label_id)
{
// Ignore background class.
continue;
}
if (all_loc_preds[i].find(label) == all_loc_preds[i].end())
{
// Something bad happened if there are no predictions for current label.
std::string error("Could not find location predictions for label ");
error += std::string(label);
CV_StsError(error.c_str());
}
const std::vector<NormalizedBBox>& label_loc_preds =
all_loc_preds[i].find(label)->second;
DecodeBBoxes(priorBBoxes, priorVariances,
code_type, variance_encoded_in_target,
label_loc_preds, &(decode_bboxes[label]));
}
}
}
void DetectionOutputLayer::ApplyNMSFast(const std::vector<NormalizedBBox>& bboxes,
const std::vector<float>& scores,
const float score_threshold,
const float nms_threshold, const int top_k,
std::vector<int>* indices)
{
// Sanity check.
CHECK_EQ(bboxes.size(), scores.size())
<< "bboxes and scores have different size.";
// Get top_k scores (with corresponding indices).
std::vector<std::pair<float, int> > score_index_vec;
GetMaxScoreIndex(scores, score_threshold, top_k, &score_index_vec);
// Do nms.
indices->clear();
while (score_index_vec.size() != 0)
{
const int idx = score_index_vec.front().second;
bool keep = true;
for (int k = 0; k < indices->size(); ++k)
{
if (keep)
{
const int kept_idx = (*indices)[k];
float overlap = JaccardOverlap(bboxes[idx], bboxes[kept_idx]);
keep = overlap <= nms_threshold;
}
else
{
break;
}
}
if (keep)
{
indices->push_back(idx);
}
score_index_vec.erase(score_index_vec.begin());
}
}
void DetectionOutputLayer::GetMaxScoreIndex(
const std::vector<float>& scores, const float threshold,const int top_k,
std::vector<std::pair<float, int> >* score_index_vec)
{
// Generate index score pairs.
for (int i = 0; i < scores.size(); ++i)
{
if (scores[i] > threshold)
{
score_index_vec->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(score_index_vec->begin(), score_index_vec->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < score_index_vec->size())
{
score_index_vec->resize(top_k);
}
}
template <typename T>
bool DetectionOutputLayer::SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2)
{
return pair1.first > pair2.first;
}
void DetectionOutputLayer::IntersectBBox(const NormalizedBBox& bbox1,
const NormalizedBBox& bbox2,
NormalizedBBox* intersect_bbox) {
if (bbox2.xmin() > bbox1.xmax() || bbox2.xmax() < bbox1.xmin() ||
bbox2.ymin() > bbox1.ymax() || bbox2.ymax() < bbox1.ymin())
{
// Return [0, 0, 0, 0] if there is no intersection.
intersect_bbox->set_xmin(0);
intersect_bbox->set_ymin(0);
intersect_bbox->set_xmax(0);
intersect_bbox->set_ymax(0);
}
else
{
intersect_bbox->set_xmin(std::max(bbox1.xmin(), bbox2.xmin()));
intersect_bbox->set_ymin(std::max(bbox1.ymin(), bbox2.ymin()));
intersect_bbox->set_xmax(std::min(bbox1.xmax(), bbox2.xmax()));
intersect_bbox->set_ymax(std::min(bbox1.ymax(), bbox2.ymax()));
}
}
float DetectionOutputLayer::JaccardOverlap(const NormalizedBBox& bbox1,
const NormalizedBBox& bbox2,
const bool normalized) {
NormalizedBBox intersect_bbox;
IntersectBBox(bbox1, bbox2, &intersect_bbox);
float intersect_width, intersect_height;
if (normalized)
{
intersect_width = intersect_bbox.xmax() - intersect_bbox.xmin();
intersect_height = intersect_bbox.ymax() - intersect_bbox.ymin();
}
else
{
intersect_width = intersect_bbox.xmax() - intersect_bbox.xmin() + 1;
intersect_height = intersect_bbox.ymax() - intersect_bbox.ymin() + 1;
}
if (intersect_width > 0 && intersect_height > 0)
{
float intersect_size = intersect_width * intersect_height;
float bbox1_size = BBoxSize(bbox1);
float bbox2_size = BBoxSize(bbox2);
return intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
else
{
return 0.;
}
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_LAYERS_DETECTION_OUTPUT_LAYER_HPP__
#define __OPENCV_DNN_LAYERS_DETECTION_OUTPUT_LAYER_HPP__
#include "../precomp.hpp"
namespace cv
{
namespace dnn
{
class DetectionOutputLayer : public Layer
{
int _numClasses;
bool _shareLocation;
int _numLocClasses;
int _backgroundLabelId;
CodeType _codeType;
bool _varianceEncodedInTarget;
int _keepTopK;
float _confidenceThreshold;
int _num;
int _numPriors;
float _nmsThreshold;
int _topK;
static const size_t _numAxes = 4;
public:
DetectionOutputLayer(LayerParams &params);
void allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
void forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs);
void checkParameter(const LayerParams &params, const std::string &parameterName);
void checkInputs(const std::vector<Blob*> &inputs);
typedef std::map<int, std::vector<NormalizedBBox> > LabelBBox;
typedef PriorBoxParameter_CodeType CodeType;
// Clip the NormalizedBBox such that the range for each corner is [0, 1].
void ClipBBox(const NormalizedBBox& bbox, NormalizedBBox* clip_bbox);
// Decode a bbox according to a prior bbox.
void DecodeBBox(const NormalizedBBox& prior_bbox,
const std::vector<float>& prior_variance, const CodeType code_type,
const bool variance_encoded_in_target, const NormalizedBBox& bbox,
NormalizedBBox* decode_bbox);
// Decode a set of bboxes according to a set of prior bboxes.
void DecodeBBoxes(const std::vector<NormalizedBBox>& prior_bboxes,
const std::vector<std::vector<float> >& prior_variances,
const CodeType code_type, const bool variance_encoded_in_target,
const std::vector<NormalizedBBox>& bboxes,
std::vector<NormalizedBBox>* decode_bboxes);
// Decode all bboxes in a batch.
void DecodeBBoxesAll(const std::vector<LabelBBox>& all_loc_pred,
const std::vector<NormalizedBBox>& prior_bboxes,
const std::vector<std::vector<float> >& prior_variances,
const int num, const bool share_location,
const int num_loc_classes, const int background_label_id,
const CodeType code_type, const bool variance_encoded_in_target,
std::vector<LabelBBox>* all_decode_bboxes);
// Get prior bounding boxes from prior_data.
// prior_data: 1 x 2 x num_priors * 4 x 1 blob.
// num_priors: number of priors.
// prior_bboxes: stores all the prior bboxes in the format of NormalizedBBox.
// prior_variances: stores all the variances needed by prior bboxes.
template <typename Dtype>
void GetPriorBBoxes(const Dtype* prior_data, const int num_priors,
std::vector<NormalizedBBox>* prior_bboxes,
std::vector<std::vector<float> >* prior_variances);
// Scale the NormalizedBBox w.r.t. height and width.
void ScaleBBox(const NormalizedBBox& bbox, const int height, const int width,
NormalizedBBox* scale_bbox);
// Do non maximum suppression given bboxes and scores.
// Inspired by Piotr Dollar's NMS implementation in EdgeBox.
// https://goo.gl/jV3JYS
// bboxes: a set of bounding boxes.
// scores: a set of corresponding confidences.
// score_threshold: a threshold used to filter detection results.
// nms_threshold: a threshold used in non maximum suppression.
// top_k: if not -1, keep at most top_k picked indices.
// indices: the kept indices of bboxes after nms.
void ApplyNMSFast(const std::vector<NormalizedBBox>& bboxes,
const std::vector<float>& scores, const float score_threshold,
const float nms_threshold, const int top_k, std::vector<int>* indices);
// Do non maximum suppression given bboxes and scores.
// bboxes: a set of bounding boxes.
// scores: a set of corresponding confidences.
// threshold: the threshold used in non maximu suppression.
// top_k: if not -1, keep at most top_k picked indices.
// reuse_overlaps: if true, use and update overlaps; otherwise, always
// compute overlap.
// overlaps: a temp place to optionally store the overlaps between pairs of
// bboxes if reuse_overlaps is true.
// indices: the kept indices of bboxes after nms.
void ApplyNMS(const std::vector<NormalizedBBox>& bboxes, const std::vector<float>& scores,
const float threshold, const int top_k, const bool reuse_overlaps,
std::map<int, std::map<int, float> >* overlaps, std::vector<int>* indices);
void ApplyNMS(const bool* overlapped, const int num, std::vector<int>* indices);
// Get confidence predictions from conf_data.
// conf_data: num x num_preds_per_class * num_classes blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_classes: number of classes.
// conf_preds: stores the confidence prediction, where each item contains
// confidence prediction for an image.
template <typename Dtype>
void GetConfidenceScores(const Dtype* conf_data, const int num,
const int num_preds_per_class, const int num_classes,
std::vector<std::map<int, std::vector<float> > >* conf_scores);
// Get confidence predictions from conf_data.
// conf_data: num x num_preds_per_class * num_classes blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_classes: number of classes.
// class_major: if true, data layout is
// num x num_classes x num_preds_per_class; otherwise, data layerout is
// num x num_preds_per_class * num_classes.
// conf_preds: stores the confidence prediction, where each item contains
// confidence prediction for an image.
template <typename Dtype>
void GetConfidenceScores(const Dtype* conf_data, const int num,
const int num_preds_per_class, const int num_classes,
const bool class_major, std::vector<std::map<int, std::vector<float> > >* conf_scores);
// Get location predictions from loc_data.
// loc_data: num x num_preds_per_class * num_loc_classes * 4 blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_loc_classes: number of location classes. It is 1 if share_location is
// true; and is equal to number of classes needed to predict otherwise.
// share_location: if true, all classes share the same location prediction.
// loc_preds: stores the location prediction, where each item contains
// location prediction for an image.
template <typename Dtype>
void GetLocPredictions(const Dtype* loc_data, const int num,
const int num_preds_per_class, const int num_loc_classes,
const bool share_location, std::vector<LabelBBox>* loc_preds);
// Get max scores with corresponding indices.
// scores: a set of scores.
// threshold: only consider scores higher than the threshold.
// top_k: if -1, keep all; otherwise, keep at most top_k.
// score_index_vec: store the sorted (score, index) pair.
void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold,
const int top_k, std::vector<std::pair<float, int> >* score_index_vec);
template <typename T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2);
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
float JaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2,
const bool normalized = true);
// Compute the intersection between two bboxes.
void IntersectBBox(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2,
NormalizedBBox* intersect_bbox);
// Compute bbox size.
float BBoxSize(const NormalizedBBox& bbox, const bool normalized = true);
};
}
}
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment