Commit 244b7926 authored by Kurnianggoro's avatar Kurnianggoro

Fixing alignments

parent 6280a069
......@@ -144,7 +144,7 @@ namespace cv{
params.read( fn );
}
void TrackerKCFImpl::write( cv::FileStorage& fs ) const{
void TrackerKCFImpl::write( cv::FileStorage& fs ) const {
params.write( fs );
}
......@@ -312,7 +312,7 @@ namespace cv{
/*
* hann window filter
*/
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type)const{
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const {
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
_dst.create(winSize, type);
......@@ -327,20 +327,15 @@ namespace cv{
for(int j = 0; j < cols; j++)
wc[j] = 0.5 * (1.0 - cos(coeff0 * j));
if(dst.depth() == CV_32F)
{
for(int i = 0; i < rows; i++)
{
if(dst.depth() == CV_32F){
for(int i = 0; i < rows; i++){
float* dstData = dst.ptr<float>(i);
double wr = 0.5 * (1.0 - cos(coeff1 * i));
for(int j = 0; j < cols; j++)
dstData[j] = (float)(wr * wc[j]);
}
}
else
{
for(int i = 0; i < rows; i++)
{
}else{
for(int i = 0; i < rows; i++){
double* dstData = dst.ptr<double>(i);
double wr = 0.5 * (1.0 - cos(coeff1 * i));
for(int j = 0; j < cols; j++)
......@@ -355,7 +350,7 @@ namespace cv{
/*
* simplification of fourier transform function in opencv
*/
void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest)const {
void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest) const {
std::vector<Mat> layers(src.channels());
std::vector<Mat> outputs(src.channels());
......@@ -368,7 +363,7 @@ namespace cv{
merge(outputs,dest);
}
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest) const{
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest) const {
std::vector<Mat> layers(src.channels());
dest.clear();
dest.resize(src.channels());
......@@ -383,14 +378,14 @@ namespace cv{
/*
* simplification of inverse fourier transform function in opencv
*/
void inline TrackerKCFImpl::ifft2(const Mat src, Mat & dest)const {
void inline TrackerKCFImpl::ifft2(const Mat src, Mat & dest) const {
idft(src,dest,DFT_SCALE+DFT_REAL_OUTPUT);
}
/*
* Point-wise multiplication of two Multichannel Mat data
*/
void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const{
void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const {
dest.clear();
dest.resize(src1.size());
......@@ -402,7 +397,7 @@ namespace cv{
/*
* Combines all channels in a multi-channels Mat data into a single channel
*/
void inline TrackerKCFImpl::sumChannels(std::vector<Mat> src, Mat & dest) const{
void inline TrackerKCFImpl::sumChannels(std::vector<Mat> src, Mat & dest) const {
dest=src[0].clone();
for(unsigned i=1;i<src.size();i++){
dest+=src[i];
......@@ -412,7 +407,7 @@ namespace cv{
/*
* obtains the projection matrix using PCA
*/
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx, double pca_rate, int compressed_sz)const{
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx, double pca_rate, int compressed_sz) const {
CV_Assert(compressed_sz<=src.channels());
// compute average
......@@ -451,7 +446,7 @@ namespace cv{
/*
* compress the features
*/
void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest)const{
void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest) const {
Mat data=src.reshape(1,src.rows*src.cols);
Mat compressed=data*_proj_mtx;
dest=compressed.reshape(_proj_mtx.cols,src.rows).clone();
......@@ -460,7 +455,7 @@ namespace cv{
/*
* obtain the patch and apply hann window filter to it
*/
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const{
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const {
Rect region=_roi;
......@@ -539,7 +534,7 @@ namespace cv{
/*
* dense gauss kernel function
*/
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k)const{
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const {
std::vector<Mat> _xf,_yf,xyf_v;
Mat xy,xyf;
double normX, normY;
......@@ -641,7 +636,7 @@ namespace cv{
/*
* calculate the detection response
*/
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response)const {
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const {
//alpha f--> 2channels ; k --> 1 channel;
Mat _kf;
fft2(_k,_kf);
......@@ -653,7 +648,7 @@ namespace cv{
/*
* calculate the detection response for splitted form
*/
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response)const {
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const {
Mat _kf;
fft2(_k,_kf);
Mat spec;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment