Commit 22f58433 authored by Maksim Shabunin's avatar Maksim Shabunin

Merge pull request #338 from patricksnape:msvc_python_fixes

parents 88a72a05 0507e168
...@@ -454,7 +454,7 @@ void TransientAreasSegmentationModuleImpl::_run(const std::valarray<float> &inpu ...@@ -454,7 +454,7 @@ void TransientAreasSegmentationModuleImpl::_run(const std::valarray<float> &inpu
// first square the input in order to increase the signal to noise ratio // first square the input in order to increase the signal to noise ratio
// get motion local energy // get motion local energy
_squaringSpatiotemporalLPfilter(&inputToSegment[channelIndex*getNBpixels()], &_localMotion[0]); _squaringSpatiotemporalLPfilter(&const_cast<std::valarray<float>&>(inputToSegment)[channelIndex*getNBpixels()], &_localMotion[0]);
// second low pass filter: access to the neighborhood motion energy // second low pass filter: access to the neighborhood motion energy
_spatiotemporalLPfilter(&_localMotion[0], &_neighborhoodMotion[0], 1); _spatiotemporalLPfilter(&_localMotion[0], &_neighborhoodMotion[0], 1);
......
...@@ -179,7 +179,7 @@ void LSDDetector::detectImpl( const Mat& imageSrc, std::vector<KeyLine>& keyline ...@@ -179,7 +179,7 @@ void LSDDetector::detectImpl( const Mat& imageSrc, std::vector<KeyLine>& keyline
kl.sPointInOctaveY = (float) extremes[1]; kl.sPointInOctaveY = (float) extremes[1];
kl.ePointInOctaveX = (float) extremes[2]; kl.ePointInOctaveX = (float) extremes[2];
kl.ePointInOctaveY = (float) extremes[3]; kl.ePointInOctaveY = (float) extremes[3];
kl.lineLength = (float) sqrt( pow( extremes[0] - extremes[2], 2 ) + pow( extremes[1] - extremes[3], 2 ) ); kl.lineLength = (float) sqrt( pow( (float) extremes[0] - extremes[2], 2 ) + pow( (float) extremes[1] - extremes[3], 2 ) );
/* compute number of pixels covered by line */ /* compute number of pixels covered by line */
LineIterator li( gaussianPyrs[j], Point( extremes[0], extremes[1] ), Point( extremes[2], extremes[3] ) ); LineIterator li( gaussianPyrs[j], Point( extremes[0], extremes[1] ), Point( extremes[2], extremes[3] ) );
......
...@@ -653,7 +653,7 @@ void BinaryDescriptor::computeImpl( const Mat& imageSrc, std::vector<KeyLine>& k ...@@ -653,7 +653,7 @@ void BinaryDescriptor::computeImpl( const Mat& imageSrc, std::vector<KeyLine>& k
uchar* pointerToRow = descriptors.ptr( originalIndex ); uchar* pointerToRow = descriptors.ptr( originalIndex );
/* get LBD data */ /* get LBD data */
float* desVec = sl[k][lineC].descriptor.data(); float* desVec = &sl[k][lineC].descriptor.front();
/* fill current row with binary descriptor */ /* fill current row with binary descriptor */
for ( int comb = 0; comb < 32; comb++ ) for ( int comb = 0; comb < 32; comb++ )
...@@ -692,7 +692,7 @@ int BinaryDescriptor::OctaveKeyLines( cv::Mat& image, ScaleLines &keyLines ) ...@@ -692,7 +692,7 @@ int BinaryDescriptor::OctaveKeyLines( cv::Mat& image, ScaleLines &keyLines )
/* sigma values and reduction factor used in Gaussian pyramids */ /* sigma values and reduction factor used in Gaussian pyramids */
float preSigma2 = 0; //orignal image is not blurred, has zero sigma; float preSigma2 = 0; //orignal image is not blurred, has zero sigma;
float curSigma2 = 1.0; //[sqrt(2)]^0=1; float curSigma2 = 1.0; //[sqrt(2)]^0=1;
double factor = sqrt( 2 ); //the down sample factor between connective two octave images double factor = sqrt( 2.0 ); //the down sample factor between connective two octave images
/* loop over number of octaves */ /* loop over number of octaves */
for ( int octaveCount = 0; octaveCount < params.numOfOctave_; octaveCount++ ) for ( int octaveCount = 0; octaveCount < params.numOfOctave_; octaveCount++ )
...@@ -1241,7 +1241,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData ) ...@@ -1241,7 +1241,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
/* construct line descriptor */ /* construct line descriptor */
pSingleLine->descriptor.resize( descriptor_size ); pSingleLine->descriptor.resize( descriptor_size );
desVec = pSingleLine->descriptor.data(); desVec = &pSingleLine->descriptor.front();
short desID; short desID;
...@@ -1280,7 +1280,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData ) ...@@ -1280,7 +1280,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
float tempM, tempS; float tempM, tempS;
tempM = 0; tempM = 0;
tempS = 0; tempS = 0;
desVec = pSingleLine->descriptor.data(); desVec = &pSingleLine->descriptor.front();
int base = 0; int base = 0;
for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) ) for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) )
...@@ -1297,7 +1297,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData ) ...@@ -1297,7 +1297,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
tempM = 1 / sqrt( tempM ); tempM = 1 / sqrt( tempM );
tempS = 1 / sqrt( tempS ); tempS = 1 / sqrt( tempS );
desVec = pSingleLine->descriptor.data(); desVec = &pSingleLine->descriptor.front();
base = 0; base = 0;
for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) ) for ( short i = 0; i < (short) ( NUM_OF_BANDS * 8 ); ++base, i = (short) ( base * 8 ) )
{ {
...@@ -1315,7 +1315,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData ) ...@@ -1315,7 +1315,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
* a threshold is used to limit the value of element in the unit feature * a threshold is used to limit the value of element in the unit feature
* vector no larger than this threshold. In Z.Wang's work, a value of 0.4 is found * vector no larger than this threshold. In Z.Wang's work, a value of 0.4 is found
* empirically to be a proper threshold.*/ * empirically to be a proper threshold.*/
desVec = pSingleLine->descriptor.data(); desVec = &pSingleLine->descriptor.front();
for ( short i = 0; i < descriptor_size; i++ ) for ( short i = 0; i < descriptor_size; i++ )
{ {
if( desVec[i] > 0.4 ) if( desVec[i] > 0.4 )
...@@ -1344,7 +1344,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData ) ...@@ -1344,7 +1344,7 @@ int BinaryDescriptor::computeLBD( ScaleLines &keyLines, bool useDetectionData )
for ( int g = 0; g < 32; g++ ) for ( int g = 0; g < 32; g++ )
{ {
/* get LBD data */ /* get LBD data */
float* des_Vec = keyLines[lineIDInScaleVec][0].descriptor.data(); float* des_Vec = &keyLines[lineIDInScaleVec][0].descriptor.front();
*pointerToRow = des_Vec[g]; *pointerToRow = des_Vec[g];
pointerToRow++; pointerToRow++;
...@@ -2204,9 +2204,9 @@ int BinaryDescriptor::EDLineDetector::EdgeDrawing( cv::Mat &image, EdgeChains &e ...@@ -2204,9 +2204,9 @@ int BinaryDescriptor::EDLineDetector::EdgeDrawing( cv::Mat &image, EdgeChains &e
edgeChains.xCors.resize( offsetPFirst + offsetPSecond ); edgeChains.xCors.resize( offsetPFirst + offsetPSecond );
edgeChains.yCors.resize( offsetPFirst + offsetPSecond ); edgeChains.yCors.resize( offsetPFirst + offsetPSecond );
edgeChains.sId.resize( offsetPS + 1 ); edgeChains.sId.resize( offsetPS + 1 );
unsigned int *pxCors = edgeChains.xCors.data(); unsigned int *pxCors = &edgeChains.xCors.front();
unsigned int *pyCors = edgeChains.yCors.data(); unsigned int *pyCors = &edgeChains.yCors.front();
unsigned int *psId = edgeChains.sId.data(); unsigned int *psId = &edgeChains.sId.front();
offsetPFirst = 0; offsetPFirst = 0;
offsetPSecond = 0; offsetPSecond = 0;
unsigned int indexInCors = 0; unsigned int indexInCors = 0;
...@@ -2252,12 +2252,12 @@ int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image, LineChains &lines ...@@ -2252,12 +2252,12 @@ int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image, LineChains &lines
lines.xCors.resize( linePixelID ); lines.xCors.resize( linePixelID );
lines.yCors.resize( linePixelID ); lines.yCors.resize( linePixelID );
lines.sId.resize( 5 * edges.numOfEdges ); lines.sId.resize( 5 * edges.numOfEdges );
unsigned int *pEdgeXCors = edges.xCors.data(); unsigned int *pEdgeXCors = &edges.xCors.front();
unsigned int *pEdgeYCors = edges.yCors.data(); unsigned int *pEdgeYCors = &edges.yCors.front();
unsigned int *pEdgeSID = edges.sId.data(); unsigned int *pEdgeSID = &edges.sId.front();
unsigned int *pLineXCors = lines.xCors.data(); unsigned int *pLineXCors = &lines.xCors.front();
unsigned int *pLineYCors = lines.yCors.data(); unsigned int *pLineYCors = &lines.yCors.front();
unsigned int *pLineSID = lines.sId.data(); unsigned int *pLineSID = &lines.sId.front();
logNT_ = 2.0 * ( log10( (double) imageWidth ) + log10( (double) imageHeight ) ); logNT_ = 2.0 * ( log10( (double) imageWidth ) + log10( (double) imageHeight ) );
double lineFitErr = 0; //the line fit error; double lineFitErr = 0; //the line fit error;
std::vector<double> lineEquation( 2, 0 ); std::vector<double> lineEquation( 2, 0 );
...@@ -2732,9 +2732,9 @@ int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image ) ...@@ -2732,9 +2732,9 @@ int BinaryDescriptor::EDLineDetector::EDline( cv::Mat &image )
lineSalience_.resize( lines_.numOfLines ); lineSalience_.resize( lines_.numOfLines );
unsigned char *pgImg = gImgWO_.ptr(); unsigned char *pgImg = gImgWO_.ptr();
unsigned int indexInLineArray; unsigned int indexInLineArray;
unsigned int *pXCor = lines_.xCors.data(); unsigned int *pXCor = &lines_.xCors.front();
unsigned int *pYCor = lines_.yCors.data(); unsigned int *pYCor = &lines_.yCors.front();
unsigned int *pSID = lines_.sId.data(); unsigned int *pSID = &lines_.sId.front();
for ( unsigned int i = 0; i < lineSalience_.size(); i++ ) for ( unsigned int i = 0; i < lineSalience_.size(); i++ )
{ {
int salience = 0; int salience = 0;
......
...@@ -39,6 +39,7 @@ ...@@ -39,6 +39,7 @@
// //
//M*/ //M*/
#include <limits>
#include "precomp.hpp" #include "precomp.hpp"
//TODO delete highgui include //TODO delete highgui include
//#include <opencv2/highgui.hpp> //#include <opencv2/highgui.hpp>
...@@ -81,7 +82,7 @@ bool MotionSaliencyBinWangApr2014::init() ...@@ -81,7 +82,7 @@ bool MotionSaliencyBinWangApr2014::init()
// Since data is even, the median is estimated using two values ​​that occupy // Since data is even, the median is estimated using two values ​​that occupy
// the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean). // the position (n / 2) and ((n / 2) +1) (choose their arithmetic mean).
potentialBackground = Mat( imgSize.height, imgSize.width, CV_32FC2, Scalar( NAN, 0 ) ); potentialBackground = Mat( imgSize.height, imgSize.width, CV_32FC2, Scalar( std::numeric_limits<float>::quiet_NaN(), 0 ) );
backgroundModel.resize( K + 1 ); backgroundModel.resize( K + 1 );
...@@ -89,7 +90,7 @@ bool MotionSaliencyBinWangApr2014::init() ...@@ -89,7 +90,7 @@ bool MotionSaliencyBinWangApr2014::init()
{ {
Mat* tmpm = new Mat; Mat* tmpm = new Mat;
tmpm->create( imgSize.height, imgSize.width, CV_32FC2 ); tmpm->create( imgSize.height, imgSize.width, CV_32FC2 );
tmpm->setTo( Scalar( NAN, 0 ) ); tmpm->setTo( Scalar( std::numeric_limits<float>::quiet_NaN(), 0 ) );
Ptr<Mat> tmp = Ptr<Mat>( tmpm ); Ptr<Mat> tmp = Ptr<Mat>( tmpm );
backgroundModel[i] = tmp; backgroundModel[i] = tmp;
} }
...@@ -418,50 +419,50 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask, ...@@ -418,50 +419,50 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
if( i > 0 && j > 0 && i < ( backgroundModel[z]->rows - 1 ) && j < ( backgroundModel[z]->cols - 1 ) ) if( i > 0 && j > 0 && i < ( backgroundModel[z]->rows - 1 ) && j < ( backgroundModel[z]->cols - 1 ) )
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - (int) floor( roiSize / 2 ), i - (int) floor( roiSize / 2 ), roiSize, roiSize ) ); backgroundModelROI = mv[0]( Rect( j - (int) floor((float) roiSize / 2 ), i - (int) floor((float) roiSize / 2 ), roiSize, roiSize ) );
} }
else if( i == 0 && j == 0 ) // upper leftt else if( i == 0 && j == 0 ) // upper leftt
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i, (int) ceil( roiSize / 2 ), (int) ceil( roiSize / 2 ) ) ); backgroundModelROI = mv[0]( Rect( j, i, (int) ceil((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ) ) );
} }
else if( j == 0 && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle left else if( j == 0 && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle left
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i - (int) floor( roiSize / 2 ), (int) ceil( roiSize / 2 ), roiSize ) ); backgroundModelROI = mv[0]( Rect( j, i - (int) floor((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ), roiSize ) );
} }
else if( i == ( backgroundModel[z]->rows - 1 ) && j == 0 ) //down left else if( i == ( backgroundModel[z]->rows - 1 ) && j == 0 ) //down left
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j, i - (int) floor( roiSize / 2 ), (int) ceil( roiSize / 2 ), (int) ceil( roiSize / 2 ) ) ); backgroundModelROI = mv[0]( Rect( j, i - (int) floor((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ) ) );
} }
else if( i == 0 && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) // upper - middle else if( i == 0 && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) // upper - middle
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( ( j - (int) floor( roiSize / 2 ) ), i, roiSize, (int) ceil( roiSize / 2 ) ) ); backgroundModelROI = mv[0]( Rect( ( j - (int) floor((float) roiSize / 2 ) ), i, roiSize, (int) ceil((float) roiSize / 2 ) ) );
} }
else if( i == ( backgroundModel[z]->rows - 1 ) && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) //down middle else if( i == ( backgroundModel[z]->rows - 1 ) && j > 0 && j < ( backgroundModel[z]->cols - 1 ) ) //down middle
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( backgroundModelROI = mv[0](
Rect( j - (int) floor( roiSize / 2 ), i - (int) floor( roiSize / 2 ), roiSize, (int) ceil( roiSize / 2 ) ) ); Rect( j - (int) floor((float) roiSize / 2 ), i - (int) floor((float) roiSize / 2 ), roiSize, (int) ceil((float) roiSize / 2 ) ) );
} }
else if( i == 0 && j == ( backgroundModel[z]->cols - 1 ) ) // upper right else if( i == 0 && j == ( backgroundModel[z]->cols - 1 ) ) // upper right
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( Rect( j - (int) floor( roiSize / 2 ), i, (int) ceil( roiSize / 2 ), (int) ceil( roiSize / 2 ) ) ); backgroundModelROI = mv[0]( Rect( j - (int) floor((float) roiSize / 2 ), i, (int) ceil((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ) ) );
} }
else if( j == ( backgroundModel[z]->cols - 1 ) && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle - right else if( j == ( backgroundModel[z]->cols - 1 ) && i > 0 && i < ( backgroundModel[z]->rows - 1 ) ) // middle - right
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( backgroundModelROI = mv[0](
Rect( j - (int) floor( roiSize / 2 ), i - (int) floor( roiSize / 2 ), (int) ceil( roiSize / 2 ), roiSize ) ); Rect( j - (int) floor((float) roiSize / 2 ), i - (int) floor((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ), roiSize ) );
} }
else if( i == ( backgroundModel[z]->rows - 1 ) && j == ( backgroundModel[z]->cols - 1 ) ) // down right else if( i == ( backgroundModel[z]->rows - 1 ) && j == ( backgroundModel[z]->cols - 1 ) ) // down right
{ {
split( *backgroundModel[z], mv ); split( *backgroundModel[z], mv );
backgroundModelROI = mv[0]( backgroundModelROI = mv[0](
Rect( j - (int) floor( roiSize / 2 ), i - (int) floor( roiSize / 2 ), (int) ceil( roiSize / 2 ), (int) ceil( roiSize / 2 ) ) ); Rect( j - (int) floor((float) roiSize / 2 ), i - (int) floor((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ), (int) ceil((float) roiSize / 2 ) ) );
} }
/* Check if the value of current pixel BA in potentialBackground model is already contained in at least one of its neighbors' /* Check if the value of current pixel BA in potentialBackground model is already contained in at least one of its neighbors'
...@@ -479,7 +480,7 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask, ...@@ -479,7 +480,7 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
/////////////////// REPLACEMENT of backgroundModel template /////////////////// /////////////////// REPLACEMENT of backgroundModel template ///////////////////
//replace TA with current TK //replace TA with current TK
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j ); backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = (float)NAN; potentialBackground.at<Vec2f>( i, j )[0] = std::numeric_limits<float>::quiet_NaN();
potentialBackground.at<Vec2f>( i, j )[1] = 0; potentialBackground.at<Vec2f>( i, j )[1] = 0;
break; break;
...@@ -489,7 +490,7 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask, ...@@ -489,7 +490,7 @@ bool MotionSaliencyBinWangApr2014::templateReplacement( const Mat& finalBFMask,
else else
{ {
backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j ); backgroundModel[backgroundModel.size() - 1]->at<Vec2f>( i, j ) = potentialBackground.at<Vec2f>( i, j );
potentialBackground.at<Vec2f>( i, j )[0] = (float)NAN; potentialBackground.at<Vec2f>( i, j )[0] = std::numeric_limits<float>::quiet_NaN();
potentialBackground.at<Vec2f>( i, j )[1] = 0; potentialBackground.at<Vec2f>( i, j )[1] = 0;
} }
} // close if of EVALUATION } // close if of EVALUATION
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment