Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
2088e5e6
Commit
2088e5e6
authored
Aug 08, 2015
by
Vladimir
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Improved VF optimization + Added EC optimization for MO-TLD
parent
b318e38b
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
345 additions
and
70 deletions
+345
-70
tracker.hpp
modules/tracking/include/opencv2/tracking/tracker.hpp
+1
-1
multiTracker_test.cpp
modules/tracking/samples/multiTracker_test.cpp
+14
-11
multiTracker.cpp
modules/tracking/src/multiTracker.cpp
+329
-57
tldEnsembleClassifier.hpp
modules/tracking/src/tldEnsembleClassifier.hpp
+1
-1
No files found.
modules/tracking/include/opencv2/tracking/tracker.hpp
View file @
2088e5e6
...
@@ -1264,7 +1264,7 @@ public:
...
@@ -1264,7 +1264,7 @@ public:
class
CV_EXPORTS_W
MultiTrackerTLD
:
public
MultiTracker
class
CV_EXPORTS_W
MultiTrackerTLD
:
public
MultiTracker
{
{
public
:
public
:
bool
update
(
const
Mat
&
image
);
bool
update
_opt
(
const
Mat
&
image
);
};
};
//! @}
//! @}
...
...
modules/tracking/samples/multiTracker_test.cpp
View file @
2088e5e6
...
@@ -49,7 +49,7 @@ using namespace std;
...
@@ -49,7 +49,7 @@ using namespace std;
using
namespace
cv
;
using
namespace
cv
;
#define NUM_TEST_FRAMES 100
#define NUM_TEST_FRAMES 100
#define TEST_VIDEO_INDEX
7 //TLD Dataset Video Index from 1-10
#define TEST_VIDEO_INDEX
15 //TLD Dataset Video Index from 1-10 for TLD and 1-60 for VOT
//#define RECORD_VIDEO_FLG
//#define RECORD_VIDEO_FLG
static
Mat
image
;
static
Mat
image
;
...
@@ -119,12 +119,12 @@ int main()
...
@@ -119,12 +119,12 @@ int main()
//From TLD dataset
//From TLD dataset
selectObject
=
true
;
selectObject
=
true
;
Rect2d
boundingBox1
=
tld
::
tld_InitDataset
(
TEST_VIDEO_INDEX
,
"D:/opencv/
TLD_dataset"
);
Rect2d
boundingBox1
=
tld
::
tld_InitDataset
(
TEST_VIDEO_INDEX
,
"D:/opencv/
VOT 2015"
,
1
);
Rect2d
boundingBox2
;
Rect2d
boundingBox2
;
boundingBox2
.
x
=
28
0
;
boundingBox2
.
x
=
47
0
;
boundingBox2
.
y
=
6
0
;
boundingBox2
.
y
=
50
0
;
boundingBox2
.
width
=
4
0
;
boundingBox2
.
width
=
5
0
;
boundingBox2
.
height
=
6
0
;
boundingBox2
.
height
=
10
0
;
frame
=
tld
::
tld_getNextDatasetFrame
();
frame
=
tld
::
tld_getNextDatasetFrame
();
frame
.
copyTo
(
image
);
frame
.
copyTo
(
image
);
...
@@ -140,6 +140,7 @@ int main()
...
@@ -140,6 +140,7 @@ int main()
std
::
cout
<<
"!!! Output video could not be opened"
<<
std
::
endl
;
std
::
cout
<<
"!!! Output video could not be opened"
<<
std
::
endl
;
getchar
();
getchar
();
return
;
return
;
}
}
#endif
#endif
...
@@ -193,12 +194,14 @@ int main()
...
@@ -193,12 +194,14 @@ int main()
else
else
{
{
//updates the tracker
//updates the tracker
if
(
mt
.
update
(
frame
))
if
(
mt
.
update_opt
(
frame
))
for
(
int
i
=
0
;
i
<
mt
.
targetNum
;
i
++
)
{
rectangle
(
image
,
mt
.
boundingBoxes
[
i
],
mt
.
colors
[
i
],
2
,
1
);
for
(
int
i
=
0
;
i
<
mt
.
targetNum
;
i
++
)
rectangle
(
frame
,
mt
.
boundingBoxes
[
i
],
mt
.
colors
[
i
],
2
,
1
);
}
}
}
}
}
imshow
(
"Tracking API"
,
imag
e
);
imshow
(
"Tracking API"
,
fram
e
);
#ifdef RECORD_VIDEO_FLG
#ifdef RECORD_VIDEO_FLG
outputVideo
<<
image
;
outputVideo
<<
image
;
...
@@ -210,7 +213,7 @@ int main()
...
@@ -210,7 +213,7 @@ int main()
double
t1
=
(
e2
-
e1
)
/
getTickFrequency
();
double
t1
=
(
e2
-
e1
)
/
getTickFrequency
();
cout
<<
frameCounter
<<
"
\t
frame : "
<<
t1
*
1000.0
<<
"ms"
<<
endl
;
cout
<<
frameCounter
<<
"
\t
frame : "
<<
t1
*
1000.0
<<
"ms"
<<
endl
;
waitKey
(
0
);
//
waitKey(0);
}
}
}
}
...
...
modules/tracking/src/multiTracker.cpp
View file @
2088e5e6
#include "
tld
Tracker.hpp"
#include "
multi
Tracker.hpp"
namespace
cv
namespace
cv
{
{
...
@@ -29,75 +29,104 @@ namespace cv
...
@@ -29,75 +29,104 @@ namespace cv
bool
MultiTracker
::
update
(
const
Mat
&
image
)
bool
MultiTracker
::
update
(
const
Mat
&
image
)
{
{
printf
(
"Naive-Loop MO-TLD Update....
\n
"
);
for
(
int
i
=
0
;
i
<
trackers
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
trackers
.
size
();
i
++
)
if
(
!
trackers
[
i
]
->
update
(
image
,
boundingBoxes
[
i
]))
if
(
!
trackers
[
i
]
->
update
(
image
,
boundingBoxes
[
i
]))
return
false
;
return
false
;
return
true
;
return
true
;
}
}
//Multitracker TLD
//Multitracker TLD
/*Optimized update method for TLD Multitracker */
/*Optimized update method for TLD Multitracker */
bool
MultiTrackerTLD
::
update
(
const
Mat
&
image
)
bool
MultiTrackerTLD
::
update
_opt
(
const
Mat
&
image
)
{
{
printf
(
"Optimized MO-TLD Update....
\n
"
);
for
(
int
k
=
0
;
k
<
trackers
.
size
();
k
++
)
{
//Set current target(tracker) parameters
Rect2d
boundingBox
=
boundingBoxes
[
k
];
Ptr
<
tld
::
TrackerTLDImpl
>
tracker
=
(
Ptr
<
tld
::
TrackerTLDImpl
>
)
static_cast
<
Ptr
<
tld
::
TrackerTLDImpl
>>
(
trackers
[
k
]);
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
Ptr
<
tld
::
Data
>
data
=
tracker
->
data
;
double
scale
=
data
->
getScale
();
//Get parameters from first object
//Set current target(tracker) parameters
Rect2d
boundingBox
=
boundingBoxes
[
0
];
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
0
];
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
Ptr
<
tld
::
Data
>
data
=
tracker
->
data
;
double
scale
=
data
->
getScale
();
Mat
image_gray
,
image_blurred
,
imageForDetector
;
Mat
image_gray
,
image_blurred
,
imageForDetector
;
cvtColor
(
image
,
image_gray
,
COLOR_BGR2GRAY
);
cvtColor
(
image
,
image_gray
,
COLOR_BGR2GRAY
);
if
(
scale
>
1.0
)
if
(
scale
>
1.0
)
resize
(
image_gray
,
imageForDetector
,
Size
(
cvRound
(
image
.
cols
*
scale
),
cvRound
(
image
.
rows
*
scale
)),
0
,
0
,
tld
::
DOWNSCALE_MODE
);
resize
(
image_gray
,
imageForDetector
,
Size
(
cvRound
(
image
.
cols
*
scale
),
cvRound
(
image
.
rows
*
scale
)),
0
,
0
,
tld
::
DOWNSCALE_MODE
);
else
else
imageForDetector
=
image_gray
;
imageForDetector
=
image_gray
;
GaussianBlur
(
imageForDetector
,
image_blurred
,
tld
::
GaussBlurKernelSize
,
0.0
);
GaussianBlur
(
imageForDetector
,
image_blurred
,
tld
::
GaussBlurKernelSize
,
0.0
);
//best overlap around 92%
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>>
detectorResults
(
targetNum
);
std
::
vector
<
std
::
vector
<
Rect2d
>>
candidates
(
targetNum
);
std
::
vector
<
std
::
vector
<
double
>>
candidatesRes
(
targetNum
);
std
::
vector
<
Rect2d
>
tmpCandidates
(
targetNum
);
std
::
vector
<
bool
>
detect_flgs
(
targetNum
);
std
::
vector
<
bool
>
trackerNeedsReInit
(
targetNum
);
bool
DETECT_FLG
=
false
;
//printf("%d\n", targetNum);
//Detect all
for
(
int
k
=
0
;
k
<
targetNum
;
k
++
)
tmpCandidates
[
k
]
=
boundingBoxes
[
k
];
//if (ocl::haveOpenCL())
detect_all
(
imageForDetector
,
image_blurred
,
tmpCandidates
,
detectorResults
,
detect_flgs
,
trackers
);
//else
//DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
//printf("BOOOLZZZ %d\n", detect_flgs[0]);
//printf("BOOOLXXX %d\n", detect_flgs[1]);
for
(
int
k
=
0
;
k
<
targetNum
;
k
++
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
k
];
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
Ptr
<
tld
::
Data
>
data
=
tracker
->
data
;
///////
data
->
frameNum
++
;
data
->
frameNum
++
;
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>
detectorResults
;
//best overlap around 92%
std
::
vector
<
Rect2d
>
candidates
;
std
::
vector
<
double
>
candidatesRes
;
bool
trackerNeedsReInit
=
false
;
bool
DETECT_FLG
=
false
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
{
Rect2d
tmpCandid
=
boundingBox
;
Rect2d
tmpCandid
=
boundingBox
es
[
k
]
;
if
(
i
==
1
)
//
if (i == 1)
{
{
if
(
ocl
::
haveOpenCL
())
DETECT_FLG
=
detect_flgs
[
k
];
DETECT_FLG
=
tldModel
->
detector
->
ocl_detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
tldModel
->
getMinSize
());
tmpCandid
=
tmpCandidates
[
k
];
else
DETECT_FLG
=
tldModel
->
detector
->
detect
(
imageForDetector
,
image_blurred
,
tmpCandid
,
detectorResults
,
tldModel
->
getMinSize
());
}
}
if
(((
i
==
0
)
&&
!
data
->
failedLastTime
&&
tracker
->
trackerProxy
->
update
(
image
,
tmpCandid
))
||
(
DETECT_FLG
))
if
(((
i
==
0
)
&&
!
data
->
failedLastTime
&&
tracker
->
trackerProxy
->
update
(
image
,
tmpCandid
))
||
(
DETECT_FLG
))
{
{
candidates
.
push_back
(
tmpCandid
);
candidates
[
k
]
.
push_back
(
tmpCandid
);
if
(
i
==
0
)
if
(
i
==
0
)
tld
::
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
tld
::
resample
(
image_gray
,
tmpCandid
,
standardPatch
);
else
else
tld
::
resample
(
imageForDetector
,
tmpCandid
,
standardPatch
);
tld
::
resample
(
imageForDetector
,
tmpCandid
,
standardPatch
);
candidatesRes
.
push_back
(
tldModel
->
detector
->
Sc
(
standardPatch
));
candidatesRes
[
k
]
.
push_back
(
tldModel
->
detector
->
Sc
(
standardPatch
));
}
}
else
else
{
{
if
(
i
==
0
)
if
(
i
==
0
)
trackerNeedsReInit
=
true
;
trackerNeedsReInit
[
k
]
=
true
;
else
trackerNeedsReInit
[
k
]
=
false
;
}
}
}
}
//printf("CanditateRes Size: %d \n", candidatesRes[k].size());
std
::
vector
<
double
>::
iterator
it
=
std
::
max_element
(
candidatesRes
.
begin
(),
candidatesRes
.
end
());
std
::
vector
<
double
>::
iterator
it
=
std
::
max_element
(
candidatesRes
[
k
].
begin
(),
candidatesRes
[
k
]
.
end
());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
...
@@ -105,25 +134,25 @@ namespace cv
...
@@ -105,25 +134,25 @@ namespace cv
//data->printme();
//data->printme();
//tldModel->printme(stdout);
//tldModel->printme(stdout);
if
(
it
==
candidatesRes
.
end
())
if
(
it
==
candidatesRes
[
k
]
.
end
())
{
{
data
->
confident
=
false
;
data
->
confident
=
false
;
data
->
failedLastTime
=
true
;
data
->
failedLastTime
=
true
;
return
false
;
return
false
;
}
}
else
else
{
{
boundingBox
=
candidates
[
it
-
candidatesRes
.
begin
()];
boundingBoxes
[
k
]
=
candidates
[
k
][
it
-
candidatesRes
[
k
].
begin
()];
boundingBoxes
[
k
]
=
boundingBox
;
data
->
failedLastTime
=
false
;
data
->
failedLastTime
=
false
;
if
(
trackerNeedsReInit
||
it
!=
candidatesRes
.
begin
())
if
(
trackerNeedsReInit
[
k
]
||
it
!=
candidatesRes
[
k
]
.
begin
())
tracker
->
trackerProxy
->
init
(
image
,
boundingBox
);
tracker
->
trackerProxy
->
init
(
image
,
boundingBox
es
[
k
]
);
}
}
#if 1
#if 1
if
(
it
!=
candidatesRes
.
end
())
if
(
it
!=
candidatesRes
[
k
]
.
end
())
{
{
tld
::
resample
(
imageForDetector
,
candidates
[
it
-
candidatesRes
.
begin
()],
standardPatch
);
tld
::
resample
(
imageForDetector
,
candidates
[
k
][
it
-
candidatesRes
[
k
]
.
begin
()],
standardPatch
);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
//dfprintf((stderr, "detector WON\n"));
...
@@ -139,29 +168,29 @@ namespace cv
...
@@ -139,29 +168,29 @@ namespace cv
if
(
data
->
confident
)
if
(
data
->
confident
)
{
{
tld
::
TrackerTLDImpl
::
Pexpert
pExpert
(
imageForDetector
,
image_blurred
,
boundingBox
,
tldModel
->
detector
,
tracker
->
params
,
data
->
getMinSize
());
tld
::
TrackerTLDImpl
::
Pexpert
pExpert
(
imageForDetector
,
image_blurred
,
boundingBox
es
[
k
]
,
tldModel
->
detector
,
tracker
->
params
,
data
->
getMinSize
());
tld
::
TrackerTLDImpl
::
Nexpert
nExpert
(
imageForDetector
,
boundingBox
,
tldModel
->
detector
,
tracker
->
params
);
tld
::
TrackerTLDImpl
::
Nexpert
nExpert
(
imageForDetector
,
boundingBox
es
[
k
]
,
tldModel
->
detector
,
tracker
->
params
);
std
::
vector
<
Mat_
<
uchar
>
>
examplesForModel
,
examplesForEnsemble
;
std
::
vector
<
Mat_
<
uchar
>
>
examplesForModel
,
examplesForEnsemble
;
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
examplesForModel
.
reserve
(
100
);
examplesForEnsemble
.
reserve
(
100
);
int
negRelabeled
=
0
;
int
negRelabeled
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
detectorResults
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
(
int
)
detectorResults
[
k
]
.
size
();
i
++
)
{
{
bool
expertResult
;
bool
expertResult
;
if
(
detectorResults
[
i
].
isObject
)
if
(
detectorResults
[
k
][
i
].
isObject
)
{
{
expertResult
=
nExpert
(
detectorResults
[
i
].
rect
);
expertResult
=
nExpert
(
detectorResults
[
k
][
i
].
rect
);
if
(
expertResult
!=
detectorResults
[
i
].
isObject
)
if
(
expertResult
!=
detectorResults
[
k
][
i
].
isObject
)
negRelabeled
++
;
negRelabeled
++
;
}
}
else
else
{
{
expertResult
=
pExpert
(
detectorResults
[
i
].
rect
);
expertResult
=
pExpert
(
detectorResults
[
k
][
i
].
rect
);
}
}
detectorResults
[
i
].
shouldBeIntegrated
=
detectorResults
[
i
].
shouldBeIntegrated
||
(
detectorResults
[
i
].
isObject
!=
expertResult
);
detectorResults
[
k
][
i
].
shouldBeIntegrated
=
detectorResults
[
k
][
i
].
shouldBeIntegrated
||
(
detectorResults
[
k
]
[
i
].
isObject
!=
expertResult
);
detectorResults
[
i
].
isObject
=
expertResult
;
detectorResults
[
k
][
i
].
isObject
=
expertResult
;
}
}
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
);
tldModel
->
integrateRelabeled
(
imageForDetector
,
image_blurred
,
detectorResults
[
k
]
);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
pExpert
.
additionalExamples
(
examplesForModel
,
examplesForEnsemble
);
if
(
ocl
::
haveOpenCL
())
if
(
ocl
::
haveOpenCL
())
...
@@ -183,9 +212,251 @@ namespace cv
...
@@ -183,9 +212,251 @@ namespace cv
#endif
#endif
}
}
}
}
//Debug display candidates after Variance Filter
////////////////////////////////////////////////
Mat
tmpImg
=
image
;
for
(
int
i
=
0
;
i
<
debugStack
[
0
].
size
();
i
++
)
//rectangle(tmpImg, debugStack[0][i], Scalar(255, 255, 255), 1, 1, 0);
debugStack
[
0
].
clear
();
tmpImg
.
copyTo
(
image
);
////////////////////////////////////////////////
return
true
;
return
true
;
}
}
void
detect_all
(
const
Mat
&
img
,
const
Mat
&
imgBlurred
,
std
::
vector
<
Rect2d
>&
res
,
std
::
vector
<
std
::
vector
<
tld
::
TLDDetector
::
LabeledPatch
>>
&
patches
,
std
::
vector
<
bool
>
&
detect_flgs
,
std
::
vector
<
Ptr
<
Tracker
>>
&
trackers
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
0
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
Size
initSize
=
tldModel
->
getMinSize
();
for
(
int
k
=
0
;
k
<
trackers
.
size
();
k
++
)
patches
[
k
].
clear
();
Mat_
<
uchar
>
standardPatch
(
tld
::
STANDARD_PATCH_SIZE
,
tld
::
STANDARD_PATCH_SIZE
);
Mat
tmp
;
int
dx
=
initSize
.
width
/
10
,
dy
=
initSize
.
height
/
10
;
Size2d
size
=
img
.
size
();
double
scale
=
1.0
;
int
npos
=
0
,
nneg
=
0
;
double
maxSc
=
-
5.0
;
Rect2d
maxScRect
;
int
scaleID
;
std
::
vector
<
Mat
>
resized_imgs
,
blurred_imgs
;
std
::
vector
<
std
::
vector
<
Point
>>
varBuffer
(
trackers
.
size
()),
ensBuffer
(
trackers
.
size
());
std
::
vector
<
std
::
vector
<
int
>>
varScaleIDs
(
trackers
.
size
()),
ensScaleIDs
(
trackers
.
size
());
std
::
vector
<
Point
>
tmpP
;
std
::
vector
<
int
>
tmpI
;
//int64 e1, e2;
//double t;
//e1 = getTickCount();
//Detection part
//Generate windows and filter by variance
scaleID
=
0
;
resized_imgs
.
push_back
(
img
);
blurred_imgs
.
push_back
(
imgBlurred
);
do
{
Mat_
<
double
>
intImgP
,
intImgP2
;
tld
::
TLDDetector
::
computeIntegralImages
(
resized_imgs
[
scaleID
],
intImgP
,
intImgP2
);
for
(
int
i
=
0
,
imax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
cols
-
initSize
.
width
)
/
dx
);
i
<
imax
;
i
++
)
{
for
(
int
j
=
0
,
jmax
=
cvFloor
((
0.0
+
resized_imgs
[
scaleID
].
rows
-
initSize
.
height
)
/
dy
);
j
<
jmax
;
j
++
)
{
//Optimized variance calculation
int
x
=
dx
*
i
,
y
=
dy
*
j
,
width
=
initSize
.
width
,
height
=
initSize
.
height
;
double
p
=
0
,
p2
=
0
;
double
A
,
B
,
C
,
D
;
A
=
intImgP
(
y
,
x
);
B
=
intImgP
(
y
,
x
+
width
);
C
=
intImgP
(
y
+
height
,
x
);
D
=
intImgP
(
y
+
height
,
x
+
width
);
p
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
A
=
intImgP2
(
y
,
x
);
B
=
intImgP2
(
y
,
x
+
width
);
C
=
intImgP2
(
y
+
height
,
x
);
D
=
intImgP2
(
y
+
height
,
x
+
width
);
p2
=
(
A
+
D
-
B
-
C
)
/
(
width
*
height
);
double
windowVar
=
p2
-
p
*
p
;
//Loop for on all objects
for
(
int
k
=
0
;
k
<
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
k
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
//Optimized variance calculation
bool
varPass
=
(
windowVar
>
tld
::
VARIANCE_THRESHOLD
*
*
tldModel
->
detector
->
originalVariancePtr
);
if
(
!
varPass
)
continue
;
varBuffer
[
k
].
push_back
(
Point
(
dx
*
i
,
dy
*
j
));
varScaleIDs
[
k
].
push_back
(
scaleID
);
//Debug display candidates after Variance Filter
double
curScale
=
pow
(
tld
::
SCALE_STEP
,
scaleID
);
debugStack
[
0
].
push_back
(
Rect2d
(
dx
*
i
*
curScale
,
dy
*
j
*
curScale
,
tldModel
->
getMinSize
().
width
*
curScale
,
tldModel
->
getMinSize
().
height
*
curScale
));
}
}
}
scaleID
++
;
size
.
width
/=
tld
::
SCALE_STEP
;
size
.
height
/=
tld
::
SCALE_STEP
;
scale
*=
tld
::
SCALE_STEP
;
resize
(
img
,
tmp
,
size
,
0
,
0
,
tld
::
DOWNSCALE_MODE
);
resized_imgs
.
push_back
(
tmp
);
GaussianBlur
(
resized_imgs
[
scaleID
],
tmp
,
tld
::
GaussBlurKernelSize
,
0.0
f
);
blurred_imgs
.
push_back
(
tmp
);
}
while
(
size
.
width
>=
initSize
.
width
&&
size
.
height
>=
initSize
.
height
);
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
//Encsemble classification
//e1 = getTickCount();
for
(
int
k
=
0
;
k
<
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
k
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
for
(
int
i
=
0
;
i
<
(
int
)
varBuffer
[
k
].
size
();
i
++
)
{
tldModel
->
detector
->
prepareClassifiers
(
static_cast
<
int
>
(
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
step
[
0
]));
double
ensRes
=
0
;
uchar
*
data
=
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
);
for
(
int
x
=
0
;
x
<
(
int
)
tldModel
->
detector
->
classifiers
.
size
();
x
++
)
{
int
position
=
0
;
for
(
int
n
=
0
;
n
<
(
int
)
tldModel
->
detector
->
classifiers
[
x
].
measurements
.
size
();
n
++
)
{
position
=
position
<<
1
;
if
(
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
x
]
<
data
[
tldModel
->
detector
->
classifiers
[
x
].
offset
[
n
].
y
])
position
++
;
}
double
posNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
x
;
double
negNum
=
(
double
)
tldModel
->
detector
->
classifiers
[
x
].
posAndNeg
[
position
].
y
;
if
(
posNum
==
0.0
&&
negNum
==
0.0
)
continue
;
else
ensRes
+=
posNum
/
(
posNum
+
negNum
);
}
ensRes
/=
tldModel
->
detector
->
classifiers
.
size
();
ensRes
=
tldModel
->
detector
->
ensembleClassifierNum
(
&
blurred_imgs
[
varScaleIDs
[
k
][
i
]].
at
<
uchar
>
(
varBuffer
[
k
][
i
].
y
,
varBuffer
[
k
][
i
].
x
));
if
(
ensRes
<=
tld
::
ENSEMBLE_THRESHOLD
)
continue
;
ensBuffer
[
k
].
push_back
(
varBuffer
[
k
][
i
]);
ensScaleIDs
[
k
].
push_back
(
varScaleIDs
[
k
][
i
]);
}
/*
for (int i = 0; i < (int)varBuffer[k].size(); i++)
{
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD)
continue;
ensBuffer[k].push_back(varBuffer[k][i]);
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
}
*/
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("Ensemble: %d\t%f\n", ensBuffer.size(), t);
//printf("varBuffer 1: %d\n", varBuffer[0].size());
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
//printf("varBuffer 2: %d\n", varBuffer[1].size());
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
//NN classification
//e1 = getTickCount();
for
(
int
k
=
0
;
k
<
trackers
.
size
();
k
++
)
{
//TLD Tracker data extraction
Tracker
*
trackerPtr
=
trackers
[
k
];
cv
::
tld
::
TrackerTLDImpl
*
tracker
=
static_cast
<
tld
::
TrackerTLDImpl
*>
(
trackerPtr
);
//TLD Model Extraction
tld
::
TrackerTLDModel
*
tldModel
=
((
tld
::
TrackerTLDModel
*
)
static_cast
<
TrackerModel
*>
(
tracker
->
model
));
npos
=
0
;
nneg
=
0
;
maxSc
=
-
5.0
;
for
(
int
i
=
0
;
i
<
(
int
)
ensBuffer
[
k
].
size
();
i
++
)
{
tld
::
TLDDetector
::
LabeledPatch
labPatch
;
double
curScale
=
pow
(
tld
::
SCALE_STEP
,
ensScaleIDs
[
k
][
i
]);
labPatch
.
rect
=
Rect2d
(
ensBuffer
[
k
][
i
].
x
*
curScale
,
ensBuffer
[
k
][
i
].
y
*
curScale
,
initSize
.
width
*
curScale
,
initSize
.
height
*
curScale
);
tld
::
resample
(
resized_imgs
[
ensScaleIDs
[
k
][
i
]],
Rect2d
(
ensBuffer
[
k
][
i
],
initSize
),
standardPatch
);
double
srValue
,
scValue
;
srValue
=
tldModel
->
detector
->
Sr
(
standardPatch
);
////To fix: Check the paper, probably this cause wrong learning
//
labPatch
.
isObject
=
srValue
>
tld
::
THETA_NN
;
labPatch
.
shouldBeIntegrated
=
abs
(
srValue
-
tld
::
THETA_NN
)
<
0.1
;
patches
[
k
].
push_back
(
labPatch
);
//
if
(
!
labPatch
.
isObject
)
{
nneg
++
;
continue
;
}
else
{
npos
++
;
}
scValue
=
tldModel
->
detector
->
Sc
(
standardPatch
);
if
(
scValue
>
maxSc
)
{
maxSc
=
scValue
;
maxScRect
=
labPatch
.
rect
;
}
//printf("%d %f %f\n", k, srValue, scValue);
}
//e2 = getTickCount();
//t = (e2 - e1) / getTickFrequency()*1000.0;
//printf("NN: %d\t%f\n", patches.size(), t);
if
(
maxSc
<
0
)
detect_flgs
[
k
]
=
false
;
else
{
res
[
k
]
=
maxScRect
;
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
detect_flgs
[
k
]
=
true
;
}
}
}
}
}
\ No newline at end of file
modules/tracking/src/tldEnsembleClassifier.hpp
View file @
2088e5e6
...
@@ -54,7 +54,7 @@ namespace cv
...
@@ -54,7 +54,7 @@ namespace cv
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbability
(
const
uchar
*
data
,
int
rowstep
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
double
posteriorProbabilityFast
(
const
uchar
*
data
)
const
;
void
prepareClassifier
(
int
rowstep
);
void
prepareClassifier
(
int
rowstep
);
private
:
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
TLDEnsembleClassifier
(
const
std
::
vector
<
Vec4b
>&
meas
,
int
beg
,
int
end
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
static
void
stepPrefSuff
(
std
::
vector
<
Vec4b
>
&
arr
,
int
pos
,
int
len
,
int
gridSize
);
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
int
code
(
const
uchar
*
data
,
int
rowstep
)
const
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment