This learning structure construction and feature extraction concept is based on Convolutional Neural Network, the main reference paper could be found at:
I implemented the training and feature extraction codes mainly based on CAFFE project which will be compiled as libcaffe for the cnn_3dobj OpenCV module, codes are mainly concentrating on triplet and pair-wise jointed loss layer, the training data arrangement is also important which basic training information.
Codes about my triplet version of caffe are released on GIthub, you can git it through:
####This learning structure construction and feature extraction concept is based on Convolutional Neural Network, the main reference paper could be found at:
####I implemented the training and feature extraction codes mainly based on CAFFE project(<http://caffe.berkeleyvision.org/>) which will be compiled as libcaffe for the cnn_3dobj OpenCV module, codes are mainly concentrating on triplet and pair-wise jointed loss layer, the training data arrangement is also important which basic training information.
####Codes about my triplet version of caffe are released on Github:
###Prerequisite for this module: protobuf and caffe, for the libcaffe installation, you can install it on standard system path for the aim of being able to be linked by this OpenCV module when compiling and function using. Using: -D CMAKE_INSTALL_PREFIX=/usr/local as an building option when you cmake, the building process on Caffe on system could be like this:
####Prerequisite for this module: protobuf and caffe, for the libcaffe installation, you can install it on standard system path for the aim of being able to be linked by this OpenCV module when compiling and function using. Using: -D CMAKE_INSTALL_PREFIX=/usr/local as an building option when you cmake, the building process on Caffe on system could be like this:
###After all these steps, the headers and libs of CAFFE will be set on /usr/local/ path, and when you compiling opencv with opencv_contrib modules as below, the protobuf and caffe will be recognized as already installed while building. Protobuf is needed.
####After all these steps, the headers and libs of CAFFE will be set on /usr/local/ path, and when you compiling opencv with opencv_contrib modules as below, the protobuf and caffe will be recognized as already installed while building. Protobuf is needed.
###If you encouter the no declaration errors when you 'make', it might becaused that you have installed the older version of cnn_3dobj module and the header file changed in a newly released version of codes. This problem is the cmake and make can't detect the header should be updated and it keeps the older header remains in /usr/local/include/opencv2 whithout updating. This error could be solved by remove the installed older version of cnn_3dobj module by:
####If you encouter the no declaration errors when you 'make', it might becaused that you have installed the older version of cnn_3dobj module and the header file changed in a newly released version of codes. This problem is the cmake and make can't detect the header should be updated and it keeps the older header remains in /usr/local/include/opencv2 whithout updating. This error could be solved by remove the installed older version of cnn_3dobj module by:
###Imagas generation from different pose, by default there are 4 models used, there will be 276 images in all which each class contains 69 iamges, if you want to use additional .ply models, it is necessary to change the class number parameter to the new class number and also give it a new class label. If you will train net work and extract feature from RGB images set the parameter rgb_use as 1.
####Imagas generation from different pose, by default there are 4 models used, there will be 276 images in all which each class contains 69 iamges, if you want to use additional .ply models, it is necessary to change the class number parameter to the new class number and also give it a new class label. If you will train net work and extract feature from RGB images set the parameter rgb_use as 1.
###When all images are created in images_all folder as a collection of training images for network tranining and as a gallery of reference images for the classification part, then proceed on.
###After this demo, the binary files of images and labels will be stored as 'binary_image' and 'binary_label' in current path, you should copy them into the leveldb folder in Caffe triplet training, for example: copy these 2 files in <caffe_source_directory>/data/linemod and rename them as 'binary_image_train', 'binary_image_test' and 'binary_label_train', 'binary_label_train'. Here I use the same as trianing and testing data, you can use different data for training and testing the performance in the CAFFE training process. It's important to observe the loss of testing data to check whether training data is suitable for the your aim. Loss should be obseved as keep decreasing and remain on a much smaller number than the initial loss.
###You could start triplet tranining using Caffe like this:
####When all images are created in images_all folder as a collection of training images for network tranining and as a gallery of reference images for the classification part, then proceed on.
####After this demo, the binary files of images and labels will be stored as 'binary_image' and 'binary_label' in current path, you should copy them into the leveldb folder in Caffe triplet training, for example: copy these 2 files in <caffe_source_directory>/data/linemod and rename them as 'binary_image_train', 'binary_image_test' and 'binary_label_train', 'binary_label_train'. Here I use the same as trianing and testing data, you can use different data for training and testing the performance in the CAFFE training process. It's important to observe the loss of testing data to check whether training data is suitable for the your aim. Loss should be obseved as keep decreasing and remain on a much smaller number than the initial loss.
####You could start triplet tranining using Caffe like this:
```
$ cd
$ cd <caffe_source_directory>
$ ./examples/triplet/create_3d_triplet.sh
$ ./examples/triplet/train_3d_triplet.sh
```
###After doing this, you will get .caffemodel files as the trained parameter of net work. I have already provide the net definition .prototxt files and the pretrained .caffemodel in <opencv_contrib>/modules/cnn_3dobj/samples/build/data folder, you could just use them without training in caffe.
==============
####After doing this, you will get .caffemodel files as the trained parameter of net work. I have already provide the net definition .prototxt files and the pretrained .caffemodel in <opencv_contrib>/modules/cnn_3dobj/testdata/cv folder, you could just use them without training in caffe.
$ cd <opencv_contrib>/modules/cnn_3dobj/samples/build
```
###Classifier, this will extracting the feature of a single image and compare it with features of gallery samples for prediction. This demo uses a set of images for feature extraction in a given path, these features will be a reference for prediction on target image. Just run:
####Classifier, this will extracting the feature of a single image and compare it with features of gallery samples for prediction. This demo uses a set of images for feature extraction in a given path, these features will be a reference for prediction on target image. The caffe model and network prototxt file is attached in <opencv_contrib>/modules/cnn_3dobj/testdata/cv. Just run:
```
$ ./classify_test
```
###if the classification and pose estimation issue need to extract mean got from all training images, you can run this:
####if the classification and pose estimation issue need to extract mean got from all training images, you can run this:
####This demo will have a test on the performance of trained CNN model on several images. If the the model fail on telling different samples from seperate classes or confused on samples with similar pose but from different classes, it will give some information on the model analysis.
/** @brief Wrap the input layer of the network in separate cv::Mat objects(one per channel). This way we save one memcpy operation and we don't need to rely on cudaMemcpy2D. The last preprocessing operation will write the separate channels directly to the input layer.
@@ -74,10 +74,10 @@ int main(int argc, char** argv)
{
constStringkeys="{help | | this demo will convert a set of images in a particular path into leveldb database for feature extraction using Caffe. If there little variance in data such as human faces, you can add a mean_file, otherwise it is not so useful}"
"{src_dir | ../data/images_all/ | Source direction of the images ready for being used for extract feature as gallery.}"
"{caffemodel | ../data/3d_triplet_iter_20000.caffemodel | caffe model for feature exrtaction.}"
"{network_forIMG | ../data/3d_triplet_testIMG.prototxt | Network definition file used for extracting feature from a single image and making a classification}"
"{caffemodel | ../../testdata/cv/3d_triplet_iter_30000.caffemodel | caffe model for feature exrtaction.}"
"{network_forIMG | ../../testdata/cv/3d_triplet_testIMG.prototxt | Network definition file used for extracting feature from a single image and making a classification}"
"{mean_file | no | The mean file generated by Caffe from all gallery images, this could be used for mean value substraction from all images. If you want to use the mean file, you can set this as ../data/images_mean/triplet_mean.binaryproto.}"
"{target_img | ../data/images_all/3_13.png | Path of image waiting to be classified.}"
"{target_img | ../data/images_all/1_8.png | Path of image waiting to be classified.}"
"{feature_blob | feat | Name of layer which will represent as the feature, in this network, ip1 or feat is well.}"
"{num_candidate | 15 | Number of candidates in gallery as the prediction result.}"
"{device | CPU | device}"
...
...
@@ -99,21 +99,22 @@ int main(int argc, char** argv)
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#define HAVE_CAFFE
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/cnn_3dobj.hpp"
usingnamespacecv;
usingnamespacecv::cnn_3dobj;
intmain(intargc,char**argv)
{
constStringkeys="{help | | this demo will have an analysis on the trained model, it will print information about whether the model is suit for set different classes apart and also discriminant on object pose at the same time.}"
"{caffemodel | ../../testdata/cv/3d_triplet_iter_30000.caffemodel | caffe model for feature exrtaction.}"
"{network_forIMG | ../../testdata/cv/3d_triplet_testIMG.prototxt | Network definition file used for extracting feature from a single image and making a classification}"
"{mean_file | no | The mean file generated by Caffe from all gallery images, this could be used for mean value substraction from all images. If you want to use the mean file, you can set this as ../data/images_mean/triplet_mean.binaryproto.}"
"{target_img | ../data/images_all/1_8.png | Path of image in reference.}"
"{ref_img1 | ../data/images_all/1_23.png | Path of closest image.}"
"{ref_img2 | ../data/images_all/1_14.png | Path of less closer image in the same class with reference image.}"
"{ref_img3 | ../data/images_all/3_8.png | Path of image with the same pose in another class.}"
"{feature_blob | feat | Name of layer which will represent as the feature, in this network, ip1 or feat is well.}"
"{device | CPU | device}"
"{dev_id | 0 | dev_id}";
cv::CommandLineParserparser(argc,argv,keys);
parser.about("Demo for object data classification and pose estimation");
printf("\n =========== Model %s ========== \nIs not trained properly that the similar pose could not be tell from a cluster of features.\n",caffemodel.c_str());
}
elseif(!class_pass)
{
printf("\n =========== Model %s ========== \nIs not trained properly that feature from the same class is not discriminant from the one of another class with similar pose.\n",caffemodel.c_str());
}
else
{
printf("\n =========== Model %s ========== \nSuits for setting different classes apart and also discriminant on object pose at the same time.\n",caffemodel.c_str());
constStringkeys="{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../3Dmodel/ape.ply -imagedir=../data/images_ape/ -labeldir=../data/label_ape.txt -num_class=4 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}"
constStringkeys="{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../data/3Dmodel/ape.ply -imagedir=../data/images_all/ -labeldir=../data/label_all.txt -num_class=4 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}"
"{ite_depth | 2 | Iteration of sphere generation.}"
"{plymodel | ../3Dmodel/ape.ply | path of the '.ply' file for image rendering. }"
"{plymodel | ../data/3Dmodel/ape.ply | path of the '.ply' file for image rendering. }"
"{imagedir | ../data/images_all/ | path of the generated images for one particular .ply model. }"
"{labeldir | ../data/label_all.txt | path of the generated images for one particular .ply model. }"
"{num_class | 4 | total number of classes of models}"
...
...
@@ -84,8 +84,8 @@ int main(int argc, char *argv[])
printf("Reference feature is computed by Caffe extract_features tool by \n To generate values for different images, use extract_features \n with the resetted image list in prototxt.");
floatdist=norm(feature_test-feature_reference);
if(dist>5){
ts->printf(cvtest::TS::LOG,"Extracted featrue is not the same from the one extracted from Caffe.");