Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
1913eb70
Commit
1913eb70
authored
Jul 14, 2016
by
Vitaliy Lyudvichenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Adding of shape utils, more clearer layers implementations, more ocl tests
parent
b70a9dc1
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
218 additions
and
84 deletions
+218
-84
shape_utils.hpp
modules/dnn/include/opencv2/dnn/shape_utils.hpp
+135
-0
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+35
-52
convolution_layer.hpp
modules/dnn/src/layers/convolution_layer.hpp
+3
-1
op_blas.cpp
modules/dnn/src/layers/op_blas.cpp
+0
-3
op_im2col.cpp
modules/dnn/src/layers/op_im2col.cpp
+3
-4
op_im2col.hpp
modules/dnn/src/layers/op_im2col.hpp
+1
-1
precomp.hpp
modules/dnn/src/precomp.hpp
+1
-0
test_googlenet.cpp
modules/dnn/test/test_googlenet.cpp
+13
-1
test_layers.cpp
modules/dnn/test/test_layers.cpp
+27
-22
No files found.
modules/dnn/include/opencv2/dnn/shape_utils.hpp
0 → 100644
View file @
1913eb70
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__
#define __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__
#include <opencv2/core.hpp>
#include <ostream>
namespace
cv
{
namespace
dnn
{
std
::
ostream
&
operator
<<
(
std
::
ostream
&
s
,
cv
::
Range
&
r
)
{
return
s
<<
"["
<<
r
.
start
<<
", "
<<
r
.
end
<<
")"
;
}
//Reshaping
template
<
typename
Mat
>
void
reshape
(
Mat
&
m
,
const
BlobShape
&
shape
)
{
m
=
m
.
reshape
(
1
,
shape
.
dims
(),
shape
.
ptr
());
}
template
<
typename
Mat
>
Mat
reshaped
(
const
Mat
&
m
,
const
BlobShape
&
shape
)
{
return
m
.
reshape
(
1
,
shape
.
dims
(),
shape
.
ptr
());
}
//Slicing
struct
_Range
:
public
cv
::
Range
{
_Range
(
const
Range
&
r
)
:
cv
::
Range
(
r
)
{}
_Range
(
int
start
,
int
size
=
1
)
:
cv
::
Range
(
start
,
start
+
size
)
{}
};
template
<
typename
Mat
>
Mat
slice
(
const
Mat
&
m
,
const
_Range
&
r0
)
{
//CV_Assert(m.dims >= 1);
cv
::
AutoBuffer
<
cv
::
Range
,
4
>
ranges
(
m
.
dims
);
for
(
int
i
=
1
;
i
<
m
.
dims
;
i
++
)
ranges
[
i
]
=
Range
::
all
();
ranges
[
0
]
=
r0
;
return
m
(
&
ranges
[
0
]);
}
template
<
typename
Mat
>
Mat
slice
(
const
Mat
&
m
,
const
_Range
&
r0
,
const
_Range
&
r1
)
{
CV_Assert
(
m
.
dims
>=
2
);
cv
::
AutoBuffer
<
cv
::
Range
,
4
>
ranges
(
m
.
dims
);
for
(
int
i
=
2
;
i
<
m
.
dims
;
i
++
)
ranges
[
i
]
=
Range
::
all
();
ranges
[
0
]
=
r0
;
ranges
[
1
]
=
r1
;
// for (int i = 0; i < m.dims; i++)
// std::cout << ranges[i] << "\n";
return
m
(
&
ranges
[
0
]);
}
template
<
typename
Mat
>
Mat
slice
(
const
Mat
&
m
,
const
_Range
&
r0
,
const
_Range
&
r1
,
const
_Range
&
r2
)
{
CV_Assert
(
m
.
dims
<=
3
);
cv
::
AutoBuffer
<
cv
::
Range
,
4
>
ranges
(
m
.
dims
);
for
(
int
i
=
3
;
i
<
m
.
dims
;
i
++
)
ranges
[
i
]
=
Range
::
all
();
ranges
[
0
]
=
r0
;
ranges
[
1
]
=
r1
;
ranges
[
2
]
=
r2
;
return
m
(
&
ranges
[
0
]);
}
template
<
typename
Mat
>
Mat
slice
(
const
Mat
&
m
,
const
_Range
&
r0
,
const
_Range
&
r1
,
const
_Range
&
r2
,
const
_Range
&
r3
)
{
CV_Assert
(
m
.
dims
<=
4
);
cv
::
AutoBuffer
<
cv
::
Range
,
4
>
ranges
(
m
.
dims
);
for
(
int
i
=
4
;
i
<
m
.
dims
;
i
++
)
ranges
[
i
]
=
Range
::
all
();
ranges
[
0
]
=
r0
;
ranges
[
1
]
=
r1
;
ranges
[
2
]
=
r2
;
ranges
[
3
]
=
r3
;
return
m
(
&
ranges
[
0
]);
}
}
}
#endif
modules/dnn/src/layers/convolution_layer.cpp
View file @
1913eb70
...
...
@@ -45,6 +45,7 @@
#include "convolution_layer.hpp"
#include "op_im2col.hpp"
#include "op_blas.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <iostream>
namespace
cv
...
...
@@ -54,18 +55,6 @@ namespace dnn
typedef
BlobShape
Shape
;
template
<
typename
Mat
>
void
reshape
(
Mat
&
m
,
const
BlobShape
&
shape
)
{
m
=
m
.
reshape
(
1
,
shape
.
dims
(),
shape
.
ptr
());
}
template
<
typename
Mat
>
Mat
reshaped
(
const
Mat
&
m
,
const
BlobShape
&
shape
)
{
return
m
.
reshape
(
1
,
shape
.
dims
(),
shape
.
ptr
());
}
ConvolutionLayer
::
ConvolutionLayer
(
LayerParams
&
params
)
:
Layer
(
params
)
{
getKernelParams
(
params
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
);
...
...
@@ -122,12 +111,7 @@ void ConvolutionLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Bl
outputs
[
i
].
create
(
Shape
(
inputs
[
i
]
->
num
(),
topCn
,
topH
,
topW
));
}
#ifdef HAVE_OPENCL
useOpenCL
=
ocl
::
useOpenCL
()
&&
tryUseOpenCL
;
#else
useOpenCL
=
false
;
#endif
int
allocFlags
=
useOpenCL
?
Blob
::
ALLOC_BOTH
:
Blob
::
ALLOC_MAT
;
if
(
!
is1x1
())
...
...
@@ -149,33 +133,31 @@ inline bool ConvolutionLayer::is1x1() const
return
(
kerH
==
1
&&
kerW
==
1
)
&&
(
strideW
==
1
&&
strideH
==
1
);
//hotfix with stride
}
template
<
typename
Mat
>
template
<
typename
X
Mat
>
void
ConvolutionLayer
::
forward_
(
std
::
vector
<
Blob
*>
&
inputs
,
std
::
vector
<
Blob
>
&
outputs
)
{
Mat
weightsMat
=
reshaped
(
blobs
[
0
].
getRefConst
<
Mat
>
(),
Shape
(
outCn
,
ksize
));
Mat
biasesMat
=
reshaped
(
blobs
[
1
].
getRefConst
<
Mat
>
(),
Shape
(
outCn
,
1
));
XMat
weightsMat
=
reshaped
(
blobs
[
0
].
getRefConst
<
X
Mat
>
(),
Shape
(
outCn
,
ksize
));
XMat
biasesMat
=
reshaped
(
blobs
[
1
].
getRefConst
<
X
Mat
>
(),
Shape
(
outCn
,
1
));
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
Blob
&
inpBlob
=
*
inputs
[
ii
];
Blob
&
outBlob
=
outputs
[
ii
];
Mat
inpMat
=
inpBlob
.
getRefConst
<
Mat
>
();
Mat
outMat
=
reshaped
(
outBlob
.
getRef
<
Mat
>
(),
Shape
(
inpBlob
.
num
()
*
group
*
outGroupCn
,
outH
*
outW
));
XMat
inpMat
=
inpBlob
.
getRefConst
<
X
Mat
>
();
XMat
outMat
=
reshaped
(
outBlob
.
getRef
<
X
Mat
>
(),
Shape
(
inpBlob
.
num
()
*
group
*
outGroupCn
,
outH
*
outW
));
int
outCurrCn
=
0
;
for
(
int
n
=
0
;
n
<
inpBlob
.
num
();
n
++
)
{
int
kerCurrCn
=
0
;
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
im2col
(
inpBlob
,
n
,
g
,
colBlob
);
const
Mat
&
colMat
=
colBlob
.
getRefConst
<
Mat
>
(
);
XMat
colMat
,
curInp
=
slice
(
inpMat
,
n
,
_Range
(
g
*
inpGroupCn
,
inpGroupCn
)
);
im2col
(
curInp
,
colMat
);
Range
kerRange
(
kerCurrCn
,
kerCurrCn
+
outGroupCn
);
Mat
kerMat
=
weightsMat
.
rowRange
(
kerRange
);
_Range
kerRange
(
g
*
outGroupCn
,
outGroupCn
);
X
Mat
kerMat
=
weightsMat
.
rowRange
(
kerRange
);
Range
outRange
(
outCurrCn
,
outCurrCn
+
outGroupCn
);
Mat
dstMat
=
outMat
.
rowRange
(
outRange
);
_Range
outRange
((
g
+
n
*
group
)
*
outGroupCn
,
outGroupCn
);
X
Mat
dstMat
=
outMat
.
rowRange
(
outRange
);
dnn
::
gemm
(
kerMat
,
colMat
,
1
,
dstMat
,
0
);
...
...
@@ -183,9 +165,6 @@ void ConvolutionLayer::forward_(std::vector<Blob*> &inputs, std::vector<Blob> &o
{
dnn
::
gemm
(
biasesMat
.
rowRange
(
kerRange
),
biasOnesMat
,
1
,
dstMat
,
1
);
}
kerCurrCn
+=
outGroupCn
;
outCurrCn
+=
outGroupCn
;
}
}
}
...
...
@@ -199,35 +178,39 @@ void ConvolutionLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &ou
forward_
<
UMat
>
(
inputs
,
outputs
);
}
void
ConvolutionLayer
::
im2col
(
Blob
&
inpBlob
,
int
imNum
,
int
cnGroup
,
Blob
&
colBlob
)
void
ConvolutionLayer
::
im2col
(
const
UMat
&
srcImg
,
UMat
&
dstCol
)
{
#ifdef HAVE_OPENCL
if
(
useOpenCL
)
if
(
!
is1x1
()
)
{
std
::
vector
<
Range
>
ranges
(
4
,
Range
::
all
());
ranges
[
0
]
=
Range
(
imNum
,
imNum
+
1
);
ranges
[
1
]
=
Range
(
cnGroup
*
inpGroupCn
,
(
cnGroup
+
1
)
*
inpGroupCn
);
UMat
src
=
inpBlob
.
umatRef
()(
&
ranges
[
0
]);
UMat
&
dst
=
colBlob
.
umatRef
();
im2col_ocl
(
src
,
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
dst
);
return
;
im2col_ocl
(
srcImg
,
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
this
->
colBlob
.
umatRef
());
dstCol
=
this
->
colBlob
.
umatRefConst
();
}
#endif // HAVE_OPENCL
Mat
&
colMat
=
colBlob
.
matRef
();
uchar
*
srcPtr
=
inpBlob
.
ptr
(
imNum
,
cnGroup
*
inpGroupCn
);
else
{
dstCol
=
reshaped
(
srcImg
,
Shape
(
ksize
,
outH
*
outW
));
}
#else
CV_Error
(
Error
::
StsInternal
,
""
);
dstCol
=
srcImg
;
//supress warning
#endif
}
void
ConvolutionLayer
::
im2col
(
const
Mat
&
srcImg
,
Mat
&
dstCol
)
{
if
(
is1x1
())
{
colMat
=
Mat
(
ksize
,
inpBlob
.
rows
()
*
inpBlob
.
cols
(),
inpBlob
.
type
(),
srcPtr
);
dstCol
=
reshaped
(
srcImg
,
Shape
(
ksize
,
outH
*
outW
)
);
return
;
}
if
(
inpBlob
.
type
()
==
CV_32F
)
im2col_CpuPBody
<
float
>::
run
((
float
*
)
srcPtr
,
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
colMat
.
ptr
<
float
>
());
if
(
inpBlob
.
type
()
==
CV_64F
)
im2col_CpuPBody
<
double
>::
run
((
double
*
)
srcPtr
,
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
colMat
.
ptr
<
double
>
());
Mat
&
colMat
=
colBlob
.
matRef
();
if
(
srcImg
.
type
()
==
CV_32F
)
im2col_CpuPBody
<
float
>::
run
(
srcImg
.
ptr
<
float
>
(),
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
colMat
.
ptr
<
float
>
());
if
(
srcImg
.
type
()
==
CV_64F
)
im2col_CpuPBody
<
double
>::
run
(
srcImg
.
ptr
<
double
>
(),
inpGroupCn
,
inpH
,
inpW
,
kerH
,
kerW
,
padH
,
padW
,
strideH
,
strideW
,
colMat
.
ptr
<
double
>
());
dstCol
=
colMat
;
}
void
ConvolutionLayer
::
computeInpOutShape
(
const
Blob
&
inpBlob
)
...
...
modules/dnn/src/layers/convolution_layer.hpp
View file @
1913eb70
...
...
@@ -70,7 +70,9 @@ namespace dnn
inline
bool
is1x1
()
const
;
virtual
void
computeInpOutShape
(
const
Blob
&
inpBlob
);
void
im2col
(
Blob
&
inpBlob
,
int
imNum
,
int
cnGroup
,
Blob
&
colBlob
);
void
im2col
(
const
Mat
&
srcImg
,
Mat
&
dstCol
);
void
im2col
(
const
UMat
&
srcImg
,
UMat
&
dstCol
);
public
:
ConvolutionLayer
()
{}
...
...
modules/dnn/src/layers/op_blas.cpp
View file @
1913eb70
...
...
@@ -16,10 +16,7 @@ void gemm(InputArray A, InputArray B, double alpha, InputOutputArray C, double b
if
(
C
.
isMat
())
gemmCPU
(
A
.
getMat
(),
B
.
getMat
(),
alpha
,
C
.
getMatRef
(),
beta
,
flags
);
else
{
cv
::
gemm
(
A
,
B
,
alpha
,
C
,
beta
,
C
,
flags
);
std
::
cout
<<
"OCL gemm
\n
"
;
}
}
inline
void
SwapRowCols
(
const
Mat
&
A
,
int
&
rows
,
int
&
cols
,
bool
isTrans
)
...
...
modules/dnn/src/layers/op_im2col.cpp
View file @
1913eb70
...
...
@@ -40,9 +40,8 @@
//M*/
#include "../precomp.hpp"
#include <opencv2/core/ocl.hpp>
#include "op_im2col.hpp"
#include "opencl_kernels_dnn.hpp"
#include "op_im2col.hpp"
namespace
cv
{
...
...
@@ -50,7 +49,7 @@ namespace dnn
{
#ifdef HAVE_OPENCL
void
im2col_ocl
(
UMat
&
img
,
void
im2col_ocl
(
const
UMat
&
img
,
int
channels
,
int
height
,
int
width
,
int
kernel_h
,
int
kernel_w
,
int
pad_h
,
int
pad_w
,
...
...
@@ -79,7 +78,7 @@ void im2col_ocl(UMat &img,
CV_Assert
(
im2col_ker
.
run
(
1
,
&
globalSize
,
&
localSize
,
true
));
}
#endif
// HAVE_OPENCL
#endif
}
}
modules/dnn/src/layers/op_im2col.hpp
View file @
1913eb70
...
...
@@ -148,7 +148,7 @@ void col2im_cpu(const Dtype* data_col,
}
#ifdef HAVE_OPENCL
void
im2col_ocl
(
UMat
&
img
,
void
im2col_ocl
(
const
UMat
&
img
,
int
channels
,
int
height
,
int
width
,
int
kernel_h
,
int
kernel_w
,
int
pad_h
,
int
pad_w
,
...
...
modules/dnn/src/precomp.hpp
View file @
1913eb70
...
...
@@ -40,4 +40,5 @@
//M*/
#include <opencv2/core.hpp>
#include "cvconfig.h"
#include <opencv2/dnn.hpp>
modules/dnn/test/test_googlenet.cpp
View file @
1913eb70
...
...
@@ -43,6 +43,7 @@
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/core/ocl.hpp>
#include <opencv2/ts/ocl_test.hpp>
namespace
cvtest
{
...
...
@@ -56,7 +57,7 @@ static std::string _tf(TString filename)
return
(
getOpenCVExtraDir
()
+
"/dnn/"
)
+
filename
;
}
TEST
(
Reproducibility_GoogLeNet
,
Accuracy
)
static
void
launchGoogleNetTest
(
)
{
Net
net
;
{
...
...
@@ -78,5 +79,16 @@ TEST(Reproducibility_GoogLeNet, Accuracy)
normAssert
(
out
,
ref
);
}
TEST
(
Reproducibility_GoogLeNet
,
Accuracy
)
{
OCL_OFF
(
launchGoogleNetTest
());
}
OCL_TEST
(
Reproducibility_GoogLeNet
,
Accuracy
)
{
OCL_ON
(
launchGoogleNetTest
());
OCL_OFF
();
}
}
#endif
modules/dnn/test/test_layers.cpp
View file @
1913eb70
...
...
@@ -44,6 +44,7 @@
#include <iostream>
#include "npy_blob.hpp"
#include <opencv2/dnn/all_layers.hpp>
#include <opencv2/ts/ocl_test.hpp>
namespace
cvtest
{
...
...
@@ -57,7 +58,7 @@ static String _tf(TString filename)
return
(
getOpenCVExtraDir
()
+
"/dnn/layers/"
)
+
filename
;
}
static
void
testLayer
(
String
basename
,
bool
useCaffeModel
=
false
,
bool
useCommonInputBlob
=
true
)
void
testLayerUsingCaffeModels
(
String
basename
,
bool
useCaffeModel
=
false
,
bool
useCommonInputBlob
=
true
)
{
String
prototxt
=
_tf
(
basename
+
".prototxt"
);
String
caffemodel
=
_tf
(
basename
+
".caffemodel"
);
...
...
@@ -86,58 +87,62 @@ static void testLayer(String basename, bool useCaffeModel = false, bool useCommo
TEST
(
Layer_Test_Softmax
,
Accuracy
)
{
testLayer
(
"layer_softmax"
);
testLayerUsingCaffeModels
(
"layer_softmax"
);
}
OCL_TEST
(
Layer_Test_Softmax
,
Accuracy
)
{
OCL_ON
(
testLayerUsingCaffeModels
(
"layer_softmax"
));
OCL_OFF
();
}
TEST
(
Layer_Test_LRN_spatial
,
Accuracy
)
{
testLayer
(
"layer_lrn_spatial"
);
testLayer
UsingCaffeModels
(
"layer_lrn_spatial"
);
}
TEST
(
Layer_Test_LRN_channels
,
Accuracy
)
{
testLayer
(
"layer_lrn_channels"
);
testLayer
UsingCaffeModels
(
"layer_lrn_channels"
);
}
TEST
(
Layer_Test_Convolution
,
Accuracy
)
{
testLayer
(
"layer_convolution"
,
true
);
testLayerUsingCaffeModels
(
"layer_convolution"
,
true
);
}
OCL_TEST
(
Layer_Test_Convolution
,
Accuracy
)
{
OCL_ON
(
testLayerUsingCaffeModels
(
"layer_convolution"
,
true
));
OCL_OFF
();
}
//TODO: move this test into separate file
TEST
(
Layer_Test_Convolution
,
AccuracyOCL
)
TEST
(
Layer_Test_DeConvolution
,
Accuracy
)
{
if
(
cv
::
ocl
::
haveOpenCL
())
{
cv
::
ocl
::
setUseOpenCL
(
true
);
testLayer
(
"layer_convolution"
,
true
);
cv
::
ocl
::
setUseOpenCL
(
false
);
}
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
true
,
false
);
}
OCL_TEST
(
Layer_Test_DeConvolution
,
Accuracy
)
{
OCL_ON
(
testLayerUsingCaffeModels
(
"layer_deconvolution"
,
true
,
false
);
);
OCL_OFF
();
}
TEST
(
Layer_Test_InnerProduct
,
Accuracy
)
{
testLayer
(
"layer_inner_product"
,
true
);
testLayer
UsingCaffeModels
(
"layer_inner_product"
,
true
);
}
TEST
(
Layer_Test_Pooling_max
,
Accuracy
)
{
testLayer
(
"layer_pooling_max"
);
testLayer
UsingCaffeModels
(
"layer_pooling_max"
);
}
TEST
(
Layer_Test_Pooling_ave
,
Accuracy
)
{
testLayer
(
"layer_pooling_ave"
);
}
TEST
(
Layer_Test_DeConvolution
,
Accuracy
)
{
testLayer
(
"layer_deconvolution"
,
true
,
false
);
testLayerUsingCaffeModels
(
"layer_pooling_ave"
);
}
TEST
(
Layer_Test_MVN
,
Accuracy
)
{
testLayer
(
"layer_mvn"
);
testLayer
UsingCaffeModels
(
"layer_mvn"
);
}
TEST
(
Layer_Test_Reshape
,
squeeze
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment