Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
1864cc4c
Commit
1864cc4c
authored
Jun 21, 2017
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1239 from sovrasov:face_refactoring
parents
b593cae0
087210de
Show whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
285 additions
and
234 deletions
+285
-234
face.hpp
modules/face/include/opencv2/face.hpp
+4
-4
bif.hpp
modules/face/include/opencv2/face/bif.hpp
+3
-3
facerec.hpp
modules/face/include/opencv2/face/facerec.hpp
+104
-80
facerec_demo.cpp
modules/face/samples/facerec_demo.cpp
+3
-3
facerec_eigenfaces.cpp
modules/face/samples/facerec_eigenfaces.cpp
+4
-4
facerec_fisherfaces.cpp
modules/face/samples/facerec_fisherfaces.cpp
+3
-3
facerec_lbph.cpp
modules/face/samples/facerec_lbph.cpp
+1
-1
facerec_save_load.cpp
modules/face/samples/facerec_save_load.cpp
+2
-3
facerec_video.cpp
modules/face/samples/facerec_video.cpp
+1
-1
bif.cpp
modules/face/src/bif.cpp
+1
-1
eigen_faces.cpp
modules/face/src/eigen_faces.cpp
+9
-5
face_basic.cpp
modules/face/src/face_basic.cpp
+90
-0
face_utils.hpp
modules/face/src/face_utils.hpp
+33
-100
facerec.cpp
modules/face/src/facerec.cpp
+4
-4
fisher_faces.cpp
modules/face/src/fisher_faces.cpp
+9
-5
lbph_faces.cpp
modules/face/src/lbph_faces.cpp
+9
-10
precomp.hpp
modules/face/src/precomp.hpp
+0
-2
test_bif.cpp
modules/face/test/test_bif.cpp
+5
-5
No files found.
modules/face/include/opencv2/face.hpp
View file @
1864cc4c
...
...
@@ -318,7 +318,7 @@ public:
The suffix const means that prediction does not affect the internal model state, so the method can
be safely called from within different threads.
*/
CV_WRAP
virtual
void
sav
e
(
const
String
&
filename
)
const
;
CV_WRAP
virtual
void
writ
e
(
const
String
&
filename
)
const
;
/** @brief Loads a FaceRecognizer and its model state.
...
...
@@ -327,16 +327,16 @@ public:
FaceRecognizer::load(FileStorage& fs) in turn gets called by
FaceRecognizer::load(const String& filename), to ease saving a model.
*/
CV_WRAP
virtual
void
lo
ad
(
const
String
&
filename
);
CV_WRAP
virtual
void
re
ad
(
const
String
&
filename
);
/** @overload
Saves this model to a given FileStorage.
@param fs The FileStorage to store this FaceRecognizer to.
*/
virtual
void
sav
e
(
FileStorage
&
fs
)
const
=
0
;
virtual
void
writ
e
(
FileStorage
&
fs
)
const
=
0
;
/** @overload */
virtual
void
load
(
const
FileStorage
&
fs
)
=
0
;
virtual
void
read
(
const
FileNode
&
fn
)
=
0
;
/** @brief Sets string info for the specified model's label.
...
...
modules/face/include/opencv2/face/bif.hpp
View file @
1864cc4c
...
...
@@ -68,14 +68,14 @@ public:
*/
CV_WRAP
virtual
void
compute
(
InputArray
image
,
OutputArray
features
)
const
=
0
;
};
/**
/**
* @param num_bands The number of filter bands (<=8) used for computing BIF.
* @param num_rotations The number of image rotations for computing BIF.
* @returns Object for computing BIF.
*/
CV_EXPORTS_W
cv
::
Ptr
<
BIF
>
createBIF
(
int
num_bands
=
8
,
int
num_rotations
=
12
);
CV_WRAP
static
Ptr
<
BIF
>
create
(
int
num_bands
=
8
,
int
num_rotations
=
12
);
};
}
// namespace cv
}
// namespace face
...
...
modules/face/include/opencv2/face/facerec.hpp
View file @
1864cc4c
...
...
@@ -21,82 +21,106 @@ class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
{
public
:
/** @see setNumComponents */
CV_WRAP
virtual
int
getNumComponents
()
const
=
0
;
CV_WRAP
int
getNumComponents
()
const
;
/** @copybrief getNumComponents @see getNumComponents */
CV_WRAP
v
irtual
void
setNumComponents
(
int
val
)
=
0
;
CV_WRAP
v
oid
setNumComponents
(
int
val
)
;
/** @see setThreshold */
CV_WRAP
virtual
double
getThreshold
()
const
=
0
;
CV_WRAP
double
getThreshold
()
const
;
/** @copybrief getThreshold @see getThreshold */
CV_WRAP
virtual
void
setThreshold
(
double
val
)
=
0
;
CV_WRAP
virtual
std
::
vector
<
cv
::
Mat
>
getProjections
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getLabels
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getEigenValues
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getEigenVectors
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getMean
()
const
=
0
;
CV_WRAP
void
setThreshold
(
double
val
);
CV_WRAP
std
::
vector
<
cv
::
Mat
>
getProjections
()
const
;
CV_WRAP
cv
::
Mat
getLabels
()
const
;
CV_WRAP
cv
::
Mat
getEigenValues
()
const
;
CV_WRAP
cv
::
Mat
getEigenVectors
()
const
;
CV_WRAP
cv
::
Mat
getMean
()
const
;
virtual
void
read
(
const
FileNode
&
fn
);
virtual
void
write
(
FileStorage
&
fs
)
const
;
using
FaceRecognizer
::
read
;
using
FaceRecognizer
::
write
;
protected
:
int
_num_components
;
double
_threshold
;
std
::
vector
<
Mat
>
_projections
;
Mat
_labels
;
Mat
_eigenvectors
;
Mat
_eigenvalues
;
Mat
_mean
;
};
/**
@param num_components The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.
@param threshold The threshold applied in the prediction.
class
CV_EXPORTS_W
EigenFaceRecognizer
:
public
BasicFaceRecognizer
{
public
:
/**
@param num_components The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.
@param threshold The threshold applied in the prediction.
### Notes:
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
- This model does not support updating.
### Model internal data:
### Model internal data:
- num_components see createEigenFaceRecognizer.
- threshold see createEigenFaceRecognizer.
- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
- num_components see createEigenFaceRecognizer.
- threshold see createEigenFaceRecognizer.
- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The threshold applied in the prediction. If the distance to the nearest neighbor is
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The threshold applied in the prediction. If the distance to the nearest neighbor is
larger than the threshold, this method returns -1.
*/
CV_EXPORTS_W
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
/**
@param num_components The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
CV_WRAP
static
Ptr
<
EigenFaceRecognizer
>
create
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
};
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
class
CV_EXPORTS_W
FisherFaceRecognizer
:
public
BasicFaceRecognizer
{
public
:
/**
@param num_components The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
- This model does not support updating.
### Model internal data:
### Model internal data:
- num_components see createFisherFaceRecognizer.
- threshold see createFisherFaceRecognizer.
- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
- num_components see createFisherFaceRecognizer.
- threshold see createFisherFaceRecognizer.
- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The labels corresponding to the projections.
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The labels corresponding to the projections.
*/
CV_EXPORTS_W
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
CV_WRAP
static
Ptr
<
FisherFaceRecognizer
>
create
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
};
class
CV_EXPORTS_W
LBPHFaceRecognizer
:
public
FaceRecognizer
{
...
...
@@ -123,41 +147,41 @@ public:
CV_WRAP
virtual
void
setThreshold
(
double
val
)
=
0
;
CV_WRAP
virtual
std
::
vector
<
cv
::
Mat
>
getHistograms
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getLabels
()
const
=
0
;
};
/**
@param radius The radius used for building the Circular Local Binary Pattern. The greater the
radius, the
@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
the higher the computational cost.
@param grid_x The number of cells in the horizontal direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
@param grid_y The number of cells in the vertical direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
- The Circular Local Binary Patterns (used in training and prediction) expect the data given as
/**
@param radius The radius used for building the Circular Local Binary Pattern. The greater the
radius, the
@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
the higher the computational cost.
@param grid_x The number of cells in the horizontal direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
@param grid_y The number of cells in the vertical direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
- The Circular Local Binary Patterns (used in training and prediction) expect the data given as
grayscale images, use cvtColor to convert between the color spaces.
- This model supports updating.
- This model supports updating.
### Model internal data:
### Model internal data:
- radius see createLBPHFaceRecognizer.
- neighbors see createLBPHFaceRecognizer.
- grid_x see createLBPHFaceRecognizer.
- grid_y see createLBPHFaceRecognizer.
- threshold see createLBPHFaceRecognizer.
- histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- radius see createLBPHFaceRecognizer.
- neighbors see createLBPHFaceRecognizer.
- grid_x see createLBPHFaceRecognizer.
- grid_y see createLBPHFaceRecognizer.
- threshold see createLBPHFaceRecognizer.
- histograms Local Binary Patterns Histograms calculated from the given training data (empty if
none was given).
- labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- labels Labels corresponding to the calculated Local Binary Patterns Histograms.
*/
CV_EXPORTS_W
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
=
1
,
int
neighbors
=
8
,
int
grid_x
=
8
,
int
grid_y
=
8
,
double
threshold
=
DBL_MAX
);
CV_WRAP
static
Ptr
<
LBPHFaceRecognizer
>
create
(
int
radius
=
1
,
int
neighbors
=
8
,
int
grid_x
=
8
,
int
grid_y
=
8
,
double
threshold
=
DBL_MAX
);
};
//! @}
...
...
modules/face/samples/facerec_demo.cpp
View file @
1864cc4c
...
...
@@ -121,14 +121,14 @@ int main(int argc, const char *argv[]) {
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
//
cv::createEigenFaceRecognizer
(10);
//
EigenFaceRecognizer::create
(10);
//
// If you want to create a FaceRecognizer with a
// confidennce threshold, call it with:
//
//
cv::createEigenFaceRecognizer
(10, 123.0);
//
EigenFaceRecognizer::create
(10, 123.0);
//
Ptr
<
BasicFaceRecognizer
>
model
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model
=
EigenFaceRecognizer
::
create
();
for
(
int
i
=
0
;
i
<
nlabels
;
i
++
)
model
->
setLabelInfo
(
i
,
labelsInfo
[
i
]);
model
->
train
(
images
,
labels
);
...
...
modules/face/samples/facerec_eigenfaces.cpp
View file @
1864cc4c
...
...
@@ -115,19 +115,19 @@ int main(int argc, const char *argv[]) {
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
//
cv::createEigenFaceRecognizer
(10);
//
EigenFaceRecognizer::create
(10);
//
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0), call it with:
//
//
cv::createEigenFaceRecognizer
(10, 123.0);
//
EigenFaceRecognizer::create
(10, 123.0);
//
// If you want to use _all_ Eigenfaces and have a threshold,
// then call the method like this:
//
//
cv::createEigenFaceRecognizer
(0, 123.0);
//
EigenFaceRecognizer::create
(0, 123.0);
//
Ptr
<
BasicFaceRecognizer
>
model
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model
=
EigenFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// test image:
...
...
modules/face/samples/facerec_fisherfaces.cpp
View file @
1864cc4c
...
...
@@ -114,7 +114,7 @@ int main(int argc, const char *argv[]) {
// If you just want to keep 10 Fisherfaces, then call
// the factory method like this:
//
//
cv::createFisherFaceRecognizer
(10);
//
FisherFaceRecognizer::create
(10);
//
// However it is not useful to discard Fisherfaces! Please
// always try to use _all_ available Fisherfaces for
...
...
@@ -124,9 +124,9 @@ int main(int argc, const char *argv[]) {
// confidence threshold (e.g. 123.0) and use _all_
// Fisherfaces, then call it with:
//
//
cv::createFisherFaceRecognizer
(0, 123.0);
//
FisherFaceRecognizer::create
(0, 123.0);
//
Ptr
<
BasicFaceRecognizer
>
model
=
createFisherFaceRecognizer
();
Ptr
<
FisherFaceRecognizer
>
model
=
FisherFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// test image:
...
...
modules/face/samples/facerec_lbph.cpp
View file @
1864cc4c
...
...
@@ -103,7 +103,7 @@ int main(int argc, const char *argv[]) {
//
// cv::createLBPHFaceRecognizer(1,8,8,8,123.0)
//
Ptr
<
LBPHFaceRecognizer
>
model
=
createLBPHFaceRecognizer
();
Ptr
<
LBPHFaceRecognizer
>
model
=
LBPHFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// test image:
...
...
modules/face/samples/facerec_save_load.cpp
View file @
1864cc4c
...
...
@@ -127,7 +127,7 @@ int main(int argc, const char *argv[]) {
//
// cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr
<
BasicFaceRecognizer
>
model0
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model0
=
EigenFaceRecognizer
::
create
();
model0
->
train
(
images
,
labels
);
// save the model to eigenfaces_at.yaml
model0
->
save
(
"eigenfaces_at.yml"
);
...
...
@@ -135,8 +135,7 @@ int main(int argc, const char *argv[]) {
//
// Now create a new Eigenfaces Recognizer
//
Ptr
<
BasicFaceRecognizer
>
model1
=
createEigenFaceRecognizer
();
model1
->
load
(
"eigenfaces_at.yml"
);
Ptr
<
EigenFaceRecognizer
>
model1
=
Algorithm
::
load
<
EigenFaceRecognizer
>
(
"eigenfaces_at.yml"
);
// The following line predicts the label of a given
// test image:
int
predictedLabel
=
model1
->
predict
(
testSample
);
...
...
modules/face/samples/facerec_video.cpp
View file @
1864cc4c
...
...
@@ -79,7 +79,7 @@ int main(int argc, const char *argv[]) {
int
im_width
=
images
[
0
].
cols
;
int
im_height
=
images
[
0
].
rows
;
// Create a FaceRecognizer and train it on the given images:
Ptr
<
BasicFaceRecognizer
>
model
=
createFisherFaceRecognizer
();
Ptr
<
FisherFaceRecognizer
>
model
=
FisherFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
// That's it for learning the Face Recognition model. You now
// need to create the classifier for the task of Face Detection.
...
...
modules/face/src/bif.cpp
View file @
1864cc4c
...
...
@@ -216,6 +216,6 @@ void BIFImpl::computeUnit(int unit_idx, const cv::Mat &img,
}
// namespace
cv
::
Ptr
<
cv
::
face
::
BIF
>
cv
::
face
::
createBIF
(
int
num_bands
,
int
num_rotations
)
{
cv
::
Ptr
<
cv
::
face
::
BIF
>
cv
::
face
::
BIF
::
create
(
int
num_bands
,
int
num_rotations
)
{
return
cv
::
Ptr
<
cv
::
face
::
BIF
>
(
new
BIFImpl
(
num_bands
,
num_rotations
));
}
modules/face/src/eigen_faces.cpp
View file @
1864cc4c
...
...
@@ -16,7 +16,8 @@
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "precomp.hpp"
#include "face_basic.hpp"
#include <opencv2/face.hpp>
#include "face_utils.hpp"
#include <set>
#include <limits>
#include <iostream>
...
...
@@ -28,14 +29,17 @@ namespace face
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 71–86.
class
Eigenfaces
:
public
BasicFaceRecognizerImpl
class
Eigenfaces
:
public
EigenFaceRecognizer
{
public
:
// Initializes an empty Eigenfaces model.
Eigenfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
BasicFaceRecognizerImpl
(
num_components
,
threshold
)
{}
//: BasicFaceRecognizerImpl(num_components, threshold)
{
_num_components
=
num_components
;
_threshold
=
threshold
;
}
// Computes an Eigenfaces model with images in src and corresponding labels
// in labels.
...
...
@@ -122,7 +126,7 @@ void Eigenfaces::predict(InputArray _src, Ptr<PredictCollector> collector) const
}
}
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
EigenFaceRecognizer
>
EigenFaceRecognizer
::
create
(
int
num_components
,
double
threshold
)
{
return
makePtr
<
Eigenfaces
>
(
num_components
,
threshold
);
}
...
...
modules/face/src/face_basic.cpp
0 → 100644
View file @
1864cc4c
#include "opencv2/face.hpp"
#include "face_utils.hpp"
#include "precomp.hpp"
using
namespace
cv
;
using
namespace
face
;
int
BasicFaceRecognizer
::
getNumComponents
()
const
{
return
_num_components
;
}
void
BasicFaceRecognizer
::
setNumComponents
(
int
val
)
{
_num_components
=
val
;
}
double
BasicFaceRecognizer
::
getThreshold
()
const
{
return
_threshold
;
}
void
BasicFaceRecognizer
::
setThreshold
(
double
val
)
{
_threshold
=
val
;
}
std
::
vector
<
cv
::
Mat
>
BasicFaceRecognizer
::
getProjections
()
const
{
return
_projections
;
}
cv
::
Mat
BasicFaceRecognizer
::
getLabels
()
const
{
return
_labels
;
}
cv
::
Mat
BasicFaceRecognizer
::
getEigenValues
()
const
{
return
_eigenvalues
;
}
cv
::
Mat
BasicFaceRecognizer
::
getEigenVectors
()
const
{
return
_eigenvectors
;
}
cv
::
Mat
BasicFaceRecognizer
::
getMean
()
const
{
return
_mean
;
}
void
BasicFaceRecognizer
::
read
(
const
FileNode
&
fs
)
{
//read matrices
fs
[
"num_components"
]
>>
_num_components
;
fs
[
"mean"
]
>>
_mean
;
fs
[
"eigenvalues"
]
>>
_eigenvalues
;
fs
[
"eigenvectors"
]
>>
_eigenvectors
;
// read sequences
readFileNodeList
(
fs
[
"projections"
],
_projections
);
fs
[
"labels"
]
>>
_labels
;
const
FileNode
&
fn
=
fs
[
"labelsInfo"
];
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
_labelsInfo
.
clear
();
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
LabelInfo
item
;
it
>>
item
;
_labelsInfo
.
insert
(
std
::
make_pair
(
item
.
label
,
item
.
value
));
}
}
}
void
BasicFaceRecognizer
::
write
(
FileStorage
&
fs
)
const
{
// write matrices
fs
<<
"num_components"
<<
_num_components
;
fs
<<
"mean"
<<
_mean
;
fs
<<
"eigenvalues"
<<
_eigenvalues
;
fs
<<
"eigenvectors"
<<
_eigenvectors
;
// write sequences
writeFileNodeList
(
fs
,
"projections"
,
_projections
);
fs
<<
"labels"
<<
_labels
;
fs
<<
"labelsInfo"
<<
"["
;
for
(
std
::
map
<
int
,
String
>::
const_iterator
it
=
_labelsInfo
.
begin
();
it
!=
_labelsInfo
.
end
();
it
++
)
fs
<<
LabelInfo
(
it
->
first
,
it
->
second
);
fs
<<
"]"
;
}
modules/face/src/face_
basic
.hpp
→
modules/face/src/face_
utils
.hpp
View file @
1864cc4c
#ifndef __OPENCV_FACE_BASIC_HPP
#define __OPENCV_FACE_BASIC_HPP
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#i
nclude "opencv2/face.hpp"
#
include "precomp.hpp"
#i
fndef __OPENCV_FACE_UTILS_HPP
#
define __OPENCV_FACE_UTILS_HPP
#include <set>
#include <limits>
#include <iostream>
#include "precomp.hpp"
using
namespace
cv
;
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template
<
typename
_Tp
>
inline
void
readFileNodeList
(
const
FileNode
&
fn
,
std
::
vector
<
_Tp
>&
result
)
{
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
_Tp
item
;
it
>>
item
;
result
.
push_back
(
item
);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template
<
typename
_Tp
>
inline
void
writeFileNodeList
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
_Tp
>&
items
)
{
// typedefs
typedef
typename
std
::
vector
<
_Tp
>::
const_iterator
constVecIterator
;
// write the elements in item to fs
fs
<<
name
<<
"["
;
for
(
constVecIterator
it
=
items
.
begin
();
it
!=
items
.
end
();
++
it
)
{
fs
<<
*
it
;
}
fs
<<
"]"
;
}
inline
Mat
asRowMatrix
(
InputArrayOfArrays
src
,
int
rtype
,
double
alpha
=
1
,
double
beta
=
0
)
{
// make sure the input data is a vector of matrices or vector of vector
if
(
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_MAT
&&
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_VECTOR
)
{
...
...
@@ -70,6 +43,32 @@ inline Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
return
data
;
}
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template
<
typename
_Tp
>
inline
void
readFileNodeList
(
const
FileNode
&
fn
,
std
::
vector
<
_Tp
>&
result
)
{
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
_Tp
item
;
it
>>
item
;
result
.
push_back
(
item
);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template
<
typename
_Tp
>
inline
void
writeFileNodeList
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
_Tp
>&
items
)
{
// typedefs
typedef
typename
std
::
vector
<
_Tp
>::
const_iterator
constVecIterator
;
// write the elements in item to fs
fs
<<
name
<<
"["
;
for
(
constVecIterator
it
=
items
.
begin
();
it
!=
items
.
end
();
++
it
)
{
fs
<<
*
it
;
}
fs
<<
"]"
;
}
// Utility structure to load/save face label info (a pair of int and string) via FileStorage
struct
LabelInfo
{
...
...
@@ -106,70 +105,4 @@ inline void read(const cv::FileNode& node, LabelInfo& x, const LabelInfo& defaul
x
.
read
(
node
);
}
class
BasicFaceRecognizerImpl
:
public
cv
::
face
::
BasicFaceRecognizer
{
public
:
BasicFaceRecognizerImpl
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
_num_components
(
num_components
),
_threshold
(
threshold
)
{}
void
load
(
const
FileStorage
&
fs
)
{
//read matrices
fs
[
"num_components"
]
>>
_num_components
;
fs
[
"mean"
]
>>
_mean
;
fs
[
"eigenvalues"
]
>>
_eigenvalues
;
fs
[
"eigenvectors"
]
>>
_eigenvectors
;
// read sequences
readFileNodeList
(
fs
[
"projections"
],
_projections
);
fs
[
"labels"
]
>>
_labels
;
const
FileNode
&
fn
=
fs
[
"labelsInfo"
];
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
_labelsInfo
.
clear
();
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
LabelInfo
item
;
it
>>
item
;
_labelsInfo
.
insert
(
std
::
make_pair
(
item
.
label
,
item
.
value
));
}
}
}
void
save
(
FileStorage
&
fs
)
const
{
// write matrices
fs
<<
"num_components"
<<
_num_components
;
fs
<<
"mean"
<<
_mean
;
fs
<<
"eigenvalues"
<<
_eigenvalues
;
fs
<<
"eigenvectors"
<<
_eigenvectors
;
// write sequences
writeFileNodeList
(
fs
,
"projections"
,
_projections
);
fs
<<
"labels"
<<
_labels
;
fs
<<
"labelsInfo"
<<
"["
;
for
(
std
::
map
<
int
,
String
>::
const_iterator
it
=
_labelsInfo
.
begin
();
it
!=
_labelsInfo
.
end
();
it
++
)
fs
<<
LabelInfo
(
it
->
first
,
it
->
second
);
fs
<<
"]"
;
}
CV_IMPL_PROPERTY
(
int
,
NumComponents
,
_num_components
)
CV_IMPL_PROPERTY
(
double
,
Threshold
,
_threshold
)
CV_IMPL_PROPERTY_RO
(
std
::
vector
<
cv
::
Mat
>
,
Projections
,
_projections
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
Labels
,
_labels
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
EigenValues
,
_eigenvalues
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
EigenVectors
,
_eigenvectors
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
Mean
,
_mean
)
protected
:
int
_num_components
;
double
_threshold
;
std
::
vector
<
Mat
>
_projections
;
Mat
_labels
;
Mat
_eigenvectors
;
Mat
_eigenvalues
;
Mat
_mean
;
};
#endif // __OPENCV_FACE_BASIC_HPP
#endif
modules/face/src/facerec.cpp
View file @
1864cc4c
...
...
@@ -54,21 +54,21 @@ void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels)
CV_Error
(
Error
::
StsNotImplemented
,
error_msg
);
}
void
FaceRecognizer
::
lo
ad
(
const
String
&
filename
)
void
FaceRecognizer
::
re
ad
(
const
String
&
filename
)
{
FileStorage
fs
(
filename
,
FileStorage
::
READ
);
if
(
!
fs
.
isOpened
())
CV_Error
(
Error
::
StsError
,
"File can't be opened for reading!"
);
this
->
load
(
fs
);
this
->
read
(
fs
.
root
()
);
fs
.
release
();
}
void
FaceRecognizer
::
sav
e
(
const
String
&
filename
)
const
void
FaceRecognizer
::
writ
e
(
const
String
&
filename
)
const
{
FileStorage
fs
(
filename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
())
CV_Error
(
Error
::
StsError
,
"File can't be opened for writing!"
);
this
->
sav
e
(
fs
);
this
->
writ
e
(
fs
);
fs
.
release
();
}
...
...
modules/face/src/fisher_faces.cpp
View file @
1864cc4c
...
...
@@ -16,7 +16,8 @@
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "precomp.hpp"
#include "face_basic.hpp"
#include <opencv2/face.hpp>
#include "face_utils.hpp"
namespace
cv
{
namespace
face
{
...
...
@@ -24,13 +25,16 @@ namespace cv { namespace face {
// faces: Recognition using class specific linear projection.". IEEE
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// 711–720.
class
Fisherfaces
:
public
BasicFaceRecognizerImpl
class
Fisherfaces
:
public
FisherFaceRecognizer
{
public
:
// Initializes an empty Fisherfaces model.
Fisherfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
BasicFaceRecognizerImpl
(
num_components
,
threshold
)
{
}
//: BasicFaceRecognizer(num_components, threshold)
{
_num_components
=
num_components
;
_threshold
=
threshold
;
}
// Computes a Fisherfaces model with images in src and corresponding labels
// in labels.
...
...
@@ -142,7 +146,7 @@ void Fisherfaces::predict(InputArray _src, Ptr<PredictCollector> collector) cons
}
}
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
FisherFaceRecognizer
>
FisherFaceRecognizer
::
create
(
int
num_components
,
double
threshold
)
{
return
makePtr
<
Fisherfaces
>
(
num_components
,
threshold
);
}
...
...
modules/face/src/lbph_faces.cpp
View file @
1864cc4c
...
...
@@ -17,7 +17,7 @@
*/
#include "precomp.hpp"
#include "opencv2/face.hpp"
#include "face_
basic
.hpp"
#include "face_
utils
.hpp"
namespace
cv
{
namespace
face
{
...
...
@@ -46,8 +46,8 @@ private:
public
:
using
FaceRecognizer
::
save
;
using
FaceRecognizer
::
load
;
using
FaceRecognizer
::
read
;
using
FaceRecognizer
::
write
;
// Initializes this LBPH Model. The current implementation is rather fixed
// as it uses the Extended Local Binary Patterns per default.
...
...
@@ -94,11 +94,11 @@ public:
// Send all predict results to caller side for custom result handling
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
)
const
;
// See FaceRecognizer::
load
.
void
load
(
const
FileStorage
&
fs
);
// See FaceRecognizer::
write
.
void
read
(
const
FileNode
&
fn
);
// See FaceRecognizer::save.
void
sav
e
(
FileStorage
&
fs
)
const
;
void
writ
e
(
FileStorage
&
fs
)
const
;
CV_IMPL_PROPERTY
(
int
,
GridX
,
_grid_x
)
CV_IMPL_PROPERTY
(
int
,
GridY
,
_grid_y
)
...
...
@@ -110,7 +110,7 @@ public:
};
void
LBPH
::
load
(
const
FileStorag
e
&
fs
)
{
void
LBPH
::
read
(
const
FileNod
e
&
fs
)
{
fs
[
"radius"
]
>>
_radius
;
fs
[
"neighbors"
]
>>
_neighbors
;
fs
[
"grid_x"
]
>>
_grid_x
;
...
...
@@ -132,7 +132,7 @@ void LBPH::load(const FileStorage& fs) {
}
// See FaceRecognizer::save.
void
LBPH
::
sav
e
(
FileStorage
&
fs
)
const
{
void
LBPH
::
writ
e
(
FileStorage
&
fs
)
const
{
fs
<<
"radius"
<<
_radius
;
fs
<<
"neighbors"
<<
_neighbors
;
fs
<<
"grid_x"
<<
_grid_x
;
...
...
@@ -407,11 +407,10 @@ void LBPH::predict(InputArray _src, Ptr<PredictCollector> collector) const {
}
}
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
,
int
neighbors
,
Ptr
<
LBPHFaceRecognizer
>
LBPHFaceRecognizer
::
create
(
int
radius
,
int
neighbors
,
int
grid_x
,
int
grid_y
,
double
threshold
)
{
return
makePtr
<
LBPH
>
(
radius
,
neighbors
,
grid_x
,
grid_y
,
threshold
);
}
}}
modules/face/src/precomp.hpp
View file @
1864cc4c
...
...
@@ -49,10 +49,8 @@
#include "opencv2/core/private.hpp"
#include "opencv2/core/persistence.hpp"
#include <map>
#include <iostream>
#include <set>
#include <limits>
#include <iostream>
#endif
modules/face/test/test_bif.cpp
View file @
1864cc4c
...
...
@@ -40,27 +40,27 @@ the use of this software, even if advised of the possibility of such damage.
TEST
(
CV_Face_BIF
,
can_create_default
)
{
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
;
EXPECT_NO_THROW
(
bif
=
cv
::
face
::
createBIF
());
EXPECT_NO_THROW
(
bif
=
cv
::
face
::
BIF
::
create
());
EXPECT_FALSE
(
bif
.
empty
());
}
TEST
(
CV_Face_BIF
,
fails_when_zero_bands
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
0
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
0
));
}
TEST
(
CV_Face_BIF
,
fails_when_too_many_bands
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
9
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
9
));
}
TEST
(
CV_Face_BIF
,
fails_when_zero_rotations
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
8
,
0
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
8
,
0
));
}
TEST
(
CV_Face_BIF
,
can_compute
)
{
cv
::
Mat
image
(
60
,
60
,
CV_32F
);
cv
::
theRNG
().
fill
(
image
,
cv
::
RNG
::
UNIFORM
,
-
1
,
1
);
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
=
cv
::
face
::
createBIF
();
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
=
cv
::
face
::
BIF
::
create
();
cv
::
Mat
fea
;
EXPECT_NO_THROW
(
bif
->
compute
(
image
,
fea
));
EXPECT_EQ
(
cv
::
Size
(
1
,
13188
),
fea
.
size
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment