Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
173512b9
Commit
173512b9
authored
Dec 08, 2015
by
Maksim Shabunin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #402 from comdiv:comdiv
parents
ac1e608b
9ff3192e
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
243 additions
and
64 deletions
+243
-64
face.hpp
modules/face/include/opencv2/face.hpp
+17
-3
predict_collector.hpp
modules/face/include/opencv2/face/predict_collector.hpp
+103
-0
eigen_faces.cpp
modules/face/src/eigen_faces.cpp
+8
-21
facerec.cpp
modules/face/src/facerec.cpp
+14
-0
fisher_faces.cpp
modules/face/src/fisher_faces.cpp
+7
-20
lbph_faces.cpp
modules/face/src/lbph_faces.cpp
+7
-20
predict_collector.cpp
modules/face/src/predict_collector.cpp
+87
-0
No files found.
modules/face/include/opencv2/face.hpp
View file @
173512b9
...
@@ -48,6 +48,7 @@ the use of this software, even if advised of the possibility of such damage.
...
@@ -48,6 +48,7 @@ the use of this software, even if advised of the possibility of such damage.
*/
*/
#include "opencv2/core.hpp"
#include "opencv2/core.hpp"
#include "face/predict_collector.hpp"
#include <map>
#include <map>
namespace
cv
{
namespace
face
{
namespace
cv
{
namespace
face
{
...
@@ -255,7 +256,8 @@ public:
...
@@ -255,7 +256,8 @@ public:
CV_WRAP
virtual
void
update
(
InputArrayOfArrays
src
,
InputArray
labels
);
CV_WRAP
virtual
void
update
(
InputArrayOfArrays
src
,
InputArray
labels
);
/** @overload */
/** @overload */
virtual
int
predict
(
InputArray
src
)
const
=
0
;
CV_WRAP
int
predict
(
InputArray
src
)
const
;
/** @brief Predicts a label and associated confidence (e.g. distance) for a given input image.
/** @brief Predicts a label and associated confidence (e.g. distance) for a given input image.
...
@@ -292,7 +294,18 @@ public:
...
@@ -292,7 +294,18 @@ public:
model->predict(img, predicted_label, predicted_confidence);
model->predict(img, predicted_label, predicted_confidence);
@endcode
@endcode
*/
*/
CV_WRAP
virtual
void
predict
(
InputArray
src
,
CV_OUT
int
&
label
,
CV_OUT
double
&
confidence
)
const
=
0
;
CV_WRAP
void
predict
(
InputArray
src
,
CV_OUT
int
&
label
,
CV_OUT
double
&
confidence
)
const
;
/** @brief - if implemented - send all result of prediction to collector that can be used for somehow custom result handling
@param src Sample image to get a prediction from.
@param collector User-defined collector object that accepts all results
@param state - optional user-defined state token that should be passed back from FaceRecognizer implementation
To implement this method u just have to do same internal cycle as in predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) but
not try to get "best@ result, just resend it to caller side with given collector
*/
CV_WRAP
virtual
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
=
0
)
const
=
0
;
/** @brief Saves a FaceRecognizer and its model state.
/** @brief Saves a FaceRecognizer and its model state.
...
@@ -345,7 +358,8 @@ public:
...
@@ -345,7 +358,8 @@ public:
info.
info.
*/
*/
CV_WRAP
virtual
std
::
vector
<
int
>
getLabelsByString
(
const
String
&
str
)
const
;
CV_WRAP
virtual
std
::
vector
<
int
>
getLabelsByString
(
const
String
&
str
)
const
;
/** @brief threshhold parameter accessor - required for default BestMinDist collector */
virtual
double
getThreshold
()
const
=
0
;
protected
:
protected
:
// Stored pairs "label id - string info"
// Stored pairs "label id - string info"
std
::
map
<
int
,
String
>
_labelsInfo
;
std
::
map
<
int
,
String
>
_labelsInfo
;
...
...
modules/face/include/opencv2/face/predict_collector.hpp
0 → 100644
View file @
173512b9
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015, OpenCV Foundation, all rights reserved.
Copyright (C) 2015, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_PREDICT_COLLECTOR_HPP__
#define __OPENCV_PREDICT_COLLECTOR_HPP__
#include <cfloat>
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
namespace
cv
{
namespace
face
{
//! @addtogroup face
//! @{
/** @brief Abstract base class for all strategies of prediction result handling
*/
class
CV_EXPORTS_W
PredictCollector
{
protected
:
double
_threshhold
;
int
_size
;
int
_state
;
public
:
/** @brief creates new predict collector with given threshhold */
PredictCollector
(
double
threshhold
=
DBL_MAX
)
:
_threshhold
(
threshhold
)
{};
CV_WRAP
virtual
~
PredictCollector
()
{}
/** @brief called once at start of recognition
@param size total size of prediction evaluation that recognizer could perform
@param state user defined send-to-back optional value to allow multi-thread, multi-session or aggregation scenarios
*/
CV_WRAP
virtual
void
init
(
const
int
size
,
const
int
state
=
0
);
/** @brief called with every recognition result
@param label current prediction label
@param dist current prediction distance (confidence)
@param state user defined send-to-back optional value to allow multi-thread, multi-session or aggregation scenarios
@return true if recognizer should proceed prediction , false - if recognizer should terminate prediction
*/
CV_WRAP
virtual
bool
emit
(
const
int
label
,
const
double
dist
,
const
int
state
=
0
);
//not abstract while Python generation require non-abstract class
};
/** @brief default predict collector that trace minimal distance with treshhold checking (that is default behavior for most predict logic)
*/
class
CV_EXPORTS_W
MinDistancePredictCollector
:
public
PredictCollector
{
private
:
int
_label
;
double
_dist
;
public
:
/** @brief creates new MinDistancePredictCollector with given threshhold */
CV_WRAP
MinDistancePredictCollector
(
double
threshhold
=
DBL_MAX
)
:
PredictCollector
(
threshhold
)
{
_label
=
0
;
_dist
=
DBL_MAX
;
};
CV_WRAP
bool
emit
(
const
int
label
,
const
double
dist
,
const
int
state
=
0
);
/** @brief result label, 0 if not found */
CV_WRAP
int
getLabel
()
const
;
/** @brief result distance (confidence) DBL_MAX if not found */
CV_WRAP
double
getDist
()
const
;
/** @brief factory method to create cv-pointers to MinDistancePredictCollector */
CV_WRAP
static
Ptr
<
MinDistancePredictCollector
>
create
(
double
threshold
=
DBL_MAX
);
};
//! @}
}
}
#endif
\ No newline at end of file
modules/face/src/eigen_faces.cpp
View file @
173512b9
...
@@ -41,11 +41,8 @@ public:
...
@@ -41,11 +41,8 @@ public:
// in labels.
// in labels.
void
train
(
InputArrayOfArrays
src
,
InputArray
labels
);
void
train
(
InputArrayOfArrays
src
,
InputArray
labels
);
// Predicts the label of a query image in src.
// Send all predict results to caller side for custom result handling
int
predict
(
InputArray
src
)
const
;
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
)
const
;
// Predicts the label and confidence for a given sample.
void
predict
(
InputArray
_src
,
int
&
label
,
double
&
dist
)
const
;
};
};
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
...
@@ -102,7 +99,7 @@ void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
...
@@ -102,7 +99,7 @@ void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
}
}
}
}
void
Eigenfaces
::
predict
(
InputArray
_src
,
int
&
minClass
,
double
&
minDist
)
const
{
void
Eigenfaces
::
predict
(
InputArray
_src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
)
const
{
// get data
// get data
Mat
src
=
_src
.
getMat
();
Mat
src
=
_src
.
getMat
();
// make sure the user is passing correct data
// make sure the user is passing correct data
...
@@ -116,25 +113,15 @@ void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const
...
@@ -116,25 +113,15 @@ void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const
CV_Error
(
Error
::
StsBadArg
,
error_message
);
CV_Error
(
Error
::
StsBadArg
,
error_message
);
}
}
// project into PCA subspace
// project into PCA subspace
Mat
q
=
LDA
::
subspaceProject
(
_eigenvectors
,
_mean
,
src
.
reshape
(
1
,
1
));
Mat
q
=
LDA
::
subspaceProject
(
_eigenvectors
,
_mean
,
src
.
reshape
(
1
,
1
));
minDist
=
DBL_MAX
;
collector
->
init
((
int
)
_projections
.
size
(),
state
);
minClass
=
-
1
;
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_projections
.
size
();
sampleIdx
++
)
{
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_projections
.
size
();
sampleIdx
++
)
{
double
dist
=
norm
(
_projections
[
sampleIdx
],
q
,
NORM_L2
);
double
dist
=
norm
(
_projections
[
sampleIdx
],
q
,
NORM_L2
);
if
((
dist
<
minDist
)
&&
(
dist
<
_threshold
))
{
int
label
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
minDist
=
dist
;
if
(
!
collector
->
emit
(
label
,
dist
,
state
))
return
;
minClass
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
}
}
}
}
}
int
Eigenfaces
::
predict
(
InputArray
_src
)
const
{
int
label
;
double
dummy
;
predict
(
_src
,
label
,
dummy
);
return
label
;
}
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
,
double
threshold
)
{
{
return
makePtr
<
Eigenfaces
>
(
num_components
,
threshold
);
return
makePtr
<
Eigenfaces
>
(
num_components
,
threshold
);
...
...
modules/face/src/facerec.cpp
View file @
173512b9
...
@@ -72,6 +72,20 @@ void FaceRecognizer::save(const String &filename) const
...
@@ -72,6 +72,20 @@ void FaceRecognizer::save(const String &filename) const
fs
.
release
();
fs
.
release
();
}
}
int
FaceRecognizer
::
predict
(
InputArray
src
)
const
{
int
_label
;
double
_dist
;
predict
(
src
,
_label
,
_dist
);
return
_label
;
}
void
FaceRecognizer
::
predict
(
InputArray
src
,
CV_OUT
int
&
label
,
CV_OUT
double
&
confidence
)
const
{
Ptr
<
MinDistancePredictCollector
>
collector
=
MinDistancePredictCollector
::
create
(
getThreshold
());
predict
(
src
,
collector
,
0
);
label
=
collector
->
getLabel
();
confidence
=
collector
->
getDist
();
}
}
}
}
}
modules/face/src/fisher_faces.cpp
View file @
173512b9
...
@@ -36,11 +36,8 @@ public:
...
@@ -36,11 +36,8 @@ public:
// in labels.
// in labels.
void
train
(
InputArrayOfArrays
src
,
InputArray
labels
);
void
train
(
InputArrayOfArrays
src
,
InputArray
labels
);
// Predicts the label of a query image in src.
// Send all predict results to caller side for custom result handling
int
predict
(
InputArray
src
)
const
;
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
)
const
;
// Predicts the label and confidence for a given sample.
void
predict
(
InputArray
_src
,
int
&
label
,
double
&
dist
)
const
;
};
};
// Removes duplicate elements in a given vector.
// Removes duplicate elements in a given vector.
...
@@ -123,7 +120,7 @@ void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
...
@@ -123,7 +120,7 @@ void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
}
}
}
}
void
Fisherfaces
::
predict
(
InputArray
_src
,
int
&
minClass
,
double
&
minDist
)
const
{
void
Fisherfaces
::
predict
(
InputArray
_src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
)
const
{
Mat
src
=
_src
.
getMat
();
Mat
src
=
_src
.
getMat
();
// check data alignment just for clearer exception messages
// check data alignment just for clearer exception messages
if
(
_projections
.
empty
())
{
if
(
_projections
.
empty
())
{
...
@@ -137,24 +134,14 @@ void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const
...
@@ -137,24 +134,14 @@ void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const
// project into LDA subspace
// project into LDA subspace
Mat
q
=
LDA
::
subspaceProject
(
_eigenvectors
,
_mean
,
src
.
reshape
(
1
,
1
));
Mat
q
=
LDA
::
subspaceProject
(
_eigenvectors
,
_mean
,
src
.
reshape
(
1
,
1
));
// find 1-nearest neighbor
// find 1-nearest neighbor
minDist
=
DBL_MAX
;
collector
->
init
((
int
)
_projections
.
size
(),
state
);
minClass
=
-
1
;
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_projections
.
size
();
sampleIdx
++
)
{
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_projections
.
size
();
sampleIdx
++
)
{
double
dist
=
norm
(
_projections
[
sampleIdx
],
q
,
NORM_L2
);
double
dist
=
norm
(
_projections
[
sampleIdx
],
q
,
NORM_L2
);
if
((
dist
<
minDist
)
&&
(
dist
<
_threshold
))
{
int
label
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
minDist
=
dist
;
if
(
!
collector
->
emit
(
label
,
dist
,
state
))
return
;
minClass
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
}
}
}
}
}
int
Fisherfaces
::
predict
(
InputArray
_src
)
const
{
int
label
;
double
dummy
;
predict
(
_src
,
label
,
dummy
);
return
label
;
}
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
,
double
threshold
)
{
{
return
makePtr
<
Fisherfaces
>
(
num_components
,
threshold
);
return
makePtr
<
Fisherfaces
>
(
num_components
,
threshold
);
...
...
modules/face/src/lbph_faces.cpp
View file @
173512b9
...
@@ -91,11 +91,8 @@ public:
...
@@ -91,11 +91,8 @@ public:
// corresponding labels in labels.
// corresponding labels in labels.
void
update
(
InputArrayOfArrays
src
,
InputArray
labels
);
void
update
(
InputArrayOfArrays
src
,
InputArray
labels
);
// Predicts the label of a query image in src.
// Send all predict results to caller side for custom result handling
int
predict
(
InputArray
src
)
const
;
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
=
0
)
const
;
// Predicts the label and confidence for a given sample.
void
predict
(
InputArray
_src
,
int
&
label
,
double
&
dist
)
const
;
// See FaceRecognizer::load.
// See FaceRecognizer::load.
void
load
(
const
FileStorage
&
fs
);
void
load
(
const
FileStorage
&
fs
);
...
@@ -386,7 +383,7 @@ void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserv
...
@@ -386,7 +383,7 @@ void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserv
}
}
}
}
void
LBPH
::
predict
(
InputArray
_src
,
int
&
minClass
,
double
&
minDist
)
const
{
void
LBPH
::
predict
(
InputArray
_src
,
Ptr
<
PredictCollector
>
collector
,
const
int
state
)
const
{
if
(
_histograms
.
empty
())
{
if
(
_histograms
.
empty
())
{
// throw error if no data (or simply return -1?)
// throw error if no data (or simply return -1?)
String
error_message
=
"This LBPH model is not computed yet. Did you call the train method?"
;
String
error_message
=
"This LBPH model is not computed yet. Did you call the train method?"
;
...
@@ -402,24 +399,14 @@ void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
...
@@ -402,24 +399,14 @@ void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
_grid_y
,
/* grid size y */
_grid_y
,
/* grid size y */
true
/* normed histograms */
);
true
/* normed histograms */
);
// find 1-nearest neighbor
// find 1-nearest neighbor
minDist
=
DBL_MAX
;
collector
->
init
((
int
)
_histograms
.
size
(),
state
);
minClass
=
-
1
;
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_histograms
.
size
();
sampleIdx
++
)
{
for
(
size_t
sampleIdx
=
0
;
sampleIdx
<
_histograms
.
size
();
sampleIdx
++
)
{
double
dist
=
compareHist
(
_histograms
[
sampleIdx
],
query
,
HISTCMP_CHISQR_ALT
);
double
dist
=
compareHist
(
_histograms
[
sampleIdx
],
query
,
HISTCMP_CHISQR_ALT
);
if
((
dist
<
minDist
)
&&
(
dist
<
_threshold
))
{
int
label
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
minDist
=
dist
;
if
(
!
collector
->
emit
(
label
,
dist
,
state
))
return
;
minClass
=
_labels
.
at
<
int
>
((
int
)
sampleIdx
);
}
}
}
}
}
int
LBPH
::
predict
(
InputArray
_src
)
const
{
int
label
;
double
dummy
;
predict
(
_src
,
label
,
dummy
);
return
label
;
}
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
,
int
neighbors
,
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
,
int
neighbors
,
int
grid_x
,
int
grid_y
,
double
threshold
)
int
grid_x
,
int
grid_y
,
double
threshold
)
{
{
...
...
modules/face/src/predict_collector.cpp
0 → 100644
View file @
173512b9
/*
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
Copyright (C) 2015, OpenCV Foundation, all rights reserved.
Copyright (C) 2015, Itseez Inc., all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall copyright holders or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#include "opencv2/face/predict_collector.hpp"
#include "opencv2/core/cvstd.hpp"
namespace
cv
{
namespace
face
{
void
PredictCollector
::
init
(
const
int
size
,
const
int
state
)
{
//reserve for some-how usage in descendants
_size
=
size
;
_state
=
state
;
}
bool
PredictCollector
::
emit
(
const
int
,
const
double
,
const
int
state
)
{
if
(
_state
==
state
)
{
return
false
;
// if it's own session - terminate it while default PredictCollector does nothing
}
return
true
;
}
bool
MinDistancePredictCollector
::
emit
(
const
int
label
,
const
double
dist
,
const
int
state
)
{
if
(
_state
!=
state
)
{
return
true
;
// it works only in one (same) session doesn't accept values for other states
}
if
(
dist
<
_threshhold
&&
dist
<
_dist
)
{
_label
=
label
;
_dist
=
dist
;
}
return
true
;
}
int
MinDistancePredictCollector
::
getLabel
()
const
{
return
_label
;
}
double
MinDistancePredictCollector
::
getDist
()
const
{
return
_dist
;
}
Ptr
<
MinDistancePredictCollector
>
MinDistancePredictCollector
::
create
(
double
threshold
)
{
return
Ptr
<
MinDistancePredictCollector
>
(
new
MinDistancePredictCollector
(
threshold
));
}
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment