Commit 1565ff10 authored by Vladimir's avatar Vladimir

Added optimization to Multi-target TLD update

parent 15226d46
......@@ -565,7 +565,7 @@ class CV_EXPORTS_W Tracker : public virtual Algorithm
virtual void read( const FileNode& fn )=0;
virtual void write( FileStorage& fs ) const=0;
protected:
public:
virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0;
virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) = 0;
......
#include <precomp.hpp>
#include "tldTracker.hpp"
namespace cv
{
......@@ -35,14 +35,156 @@ namespace cv
return true;
}
//Multitracker TLD
/*Optimized update method for TLD Multitracker */
bool MultiTrackerTLD::update(const Mat& image)
{
for (int i = 0; i < trackers.size(); i++)
if (!trackers[i]->update(image, boundingBoxes[i]))
for (int k = 0; k < trackers.size(); k++)
{
//Set current target(tracker) parameters
Rect2d boundingBox = boundingBoxes[k];
Ptr<tld::TrackerTLDImpl> tracker = (Ptr<tld::TrackerTLDImpl>)static_cast<Ptr<tld::TrackerTLDImpl>> (trackers[k]);
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
Ptr<tld::Data> data = tracker->data;
double scale = data->getScale();
Mat image_gray, image_blurred, imageForDetector;
cvtColor(image, image_gray, COLOR_BGR2GRAY);
if (scale > 1.0)
resize(image_gray, imageForDetector, Size(cvRound(image.cols*scale), cvRound(image.rows*scale)), 0, 0, tld::DOWNSCALE_MODE);
else
imageForDetector = image_gray;
GaussianBlur(imageForDetector, image_blurred, tld::GaussBlurKernelSize, 0.0);
data->frameNum++;
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
std::vector<tld::TLDDetector::LabeledPatch> detectorResults;
//best overlap around 92%
std::vector<Rect2d> candidates;
std::vector<double> candidatesRes;
bool trackerNeedsReInit = false;
bool DETECT_FLG = false;
for (int i = 0; i < 2; i++)
{
Rect2d tmpCandid = boundingBox;
if (i == 1)
{
if (ocl::haveOpenCL())
DETECT_FLG = tldModel->detector->ocl_detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
else
DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
}
if (((i == 0) && !data->failedLastTime && tracker->trackerProxy->update(image, tmpCandid)) || (DETECT_FLG))
{
candidates.push_back(tmpCandid);
if (i == 0)
tld::resample(image_gray, tmpCandid, standardPatch);
else
tld::resample(imageForDetector, tmpCandid, standardPatch);
candidatesRes.push_back(tldModel->detector->Sc(standardPatch));
}
else
{
if (i == 0)
trackerNeedsReInit = true;
}
}
std::vector<double>::iterator it = std::max_element(candidatesRes.begin(), candidatesRes.end());
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
//data->printme();
//tldModel->printme(stdout);
if (it == candidatesRes.end())
{
data->confident = false;
data->failedLastTime = true;
return false;
}
else
{
boundingBox = candidates[it - candidatesRes.begin()];
boundingBoxes[k] = boundingBox;
data->failedLastTime = false;
if (trackerNeedsReInit || it != candidatesRes.begin())
tracker->trackerProxy->init(image, boundingBox);
}
#if 1
if (it != candidatesRes.end())
{
tld::resample(imageForDetector, candidates[it - candidatesRes.begin()], standardPatch);
//dfprintf((stderr, "%d %f %f\n", data->frameNum, tldModel->Sc(standardPatch), tldModel->Sr(standardPatch)));
//if( candidatesRes.size() == 2 && it == (candidatesRes.begin() + 1) )
//dfprintf((stderr, "detector WON\n"));
}
else
{
//dfprintf((stderr, "%d x x\n", data->frameNum));
}
#endif
if (*it > tld::CORE_THRESHOLD)
data->confident = true;
if (data->confident)
{
tld::TrackerTLDImpl::Pexpert pExpert(imageForDetector, image_blurred, boundingBox, tldModel->detector, tracker->params, data->getMinSize());
tld::TrackerTLDImpl::Nexpert nExpert(imageForDetector, boundingBox, tldModel->detector, tracker->params);
std::vector<Mat_<uchar> > examplesForModel, examplesForEnsemble;
examplesForModel.reserve(100); examplesForEnsemble.reserve(100);
int negRelabeled = 0;
for (int i = 0; i < (int)detectorResults.size(); i++)
{
bool expertResult;
if (detectorResults[i].isObject)
{
expertResult = nExpert(detectorResults[i].rect);
if (expertResult != detectorResults[i].isObject)
negRelabeled++;
}
else
{
expertResult = pExpert(detectorResults[i].rect);
}
detectorResults[i].shouldBeIntegrated = detectorResults[i].shouldBeIntegrated || (detectorResults[i].isObject != expertResult);
detectorResults[i].isObject = expertResult;
}
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
//dprintf(("%d relabeled by nExpert\n", negRelabeled));
pExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, true);
else
tldModel->integrateAdditional(examplesForModel, examplesForEnsemble, true);
examplesForModel.clear(); examplesForEnsemble.clear();
nExpert.additionalExamples(examplesForModel, examplesForEnsemble);
if (ocl::haveOpenCL())
tldModel->ocl_integrateAdditional(examplesForModel, examplesForEnsemble, false);
else
tldModel->integrateAdditional(examplesForModel, examplesForEnsemble, false);
}
else
{
#ifdef CLOSED_LOOP
tldModel->integrateRelabeled(imageForDetector, image_blurred, detectorResults);
#endif
}
}
return true;
}
......
......@@ -128,7 +128,6 @@ public:
void read(const FileNode& fn);
void write(FileStorage& fs) const;
protected:
class Pexpert
{
public:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment