Commit 1353df96 authored by jshiwam's avatar jshiwam

improve doc and added new tutorial cpp file for charuco detection

reformatted the documentation
parent 6e96bb2c
//! [charucohdr]
#include <opencv2/aruco/charuco.hpp>
//! [charucohdr]
#include <opencv2/highgui.hpp>
#include <iostream>
#include <string>
namespace {
const char* about = "A tutorial code on charuco board creation and detection of charuco board with and without camera caliberation";
const char* keys = "{c | | Put value of c=1 to create charuco board;\nc=2 to detect charuco board without camera calibration;\nc=3 to detect charuco board with camera calibration and Pose Estimation}";
}
void createBoard();
void detectCharucoBoardWithCalibrationPose();
void detectCharucoBoardWithoutCalibration();
static bool readCameraParameters(std::string filename, cv::Mat& camMatrix, cv::Mat& distCoeffs)
{
cv::FileStorage fs(filename, cv::FileStorage::READ);
if (!fs.isOpened())
return false;
fs["camera_matrix"] >> camMatrix;
fs["distortion_coefficients"] >> distCoeffs;
return true;
}
void createBoard()
{
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
//! [createBoard]
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04f, 0.02f, dictionary);
cv::Mat boardImage;
board->draw(cv::Size(600, 500), boardImage, 10, 1);
//! [createBoard]
cv::imwrite("BoardImage.jpg", boardImage);
}
//! [detwcp]
void detectCharucoBoardWithCalibrationPose()
{
cv::VideoCapture inputVideo;
inputVideo.open(0);
//! [matdiscoff]
cv::Mat cameraMatrix, distCoeffs;
std::string filename = "calib.txt";
bool readOk = readCameraParameters(filename, cameraMatrix, distCoeffs);
//! [matdiscoff]
if (!readOk) {
std::cerr << "Invalid camera file" << std::endl;
} else {
//! [dictboard]
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04f, 0.02f, dictionary);
cv::Ptr<cv::aruco::DetectorParameters> params = cv::aruco::DetectorParameters::create();
//! [dictboard]
while (inputVideo.grab()) {
//! [inputImg]
cv::Mat image;
//! [inputImg]
cv::Mat imageCopy;
inputVideo.retrieve(image);
image.copyTo(imageCopy);
//! [midcornerdet]
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f> > markerCorners;
cv::aruco::detectMarkers(image, board->dictionary, markerCorners, markerIds, params);
//! [midcornerdet]
// if at least one marker detected
if (markerIds.size() > 0) {
cv::aruco::drawDetectedMarkers(imageCopy, markerCorners, markerIds);
//! [charidcor]
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(markerCorners, markerIds, image, board, charucoCorners, charucoIds, cameraMatrix, distCoeffs);
//! [charidcor]
// if at least one charuco corner detected
if (charucoIds.size() > 0) {
cv::Scalar color = cv::Scalar(255, 0, 0);
//! [detcor]
cv::aruco::drawDetectedCornersCharuco(imageCopy, charucoCorners, charucoIds, color);
//! [detcor]
cv::Vec3d rvec, tvec;
//! [pose]
// cv::aruco::estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec);
//! [pose]
bool valid = cv::aruco::estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec);
// if charuco pose is valid
if (valid)
cv::aruco::drawAxis(imageCopy, cameraMatrix, distCoeffs, rvec, tvec, 0.1f);
}
}
cv::imshow("out", imageCopy);
char key = (char)cv::waitKey(30);
if (key == 27)
break;
}
}
}
//! [detwcp]
//! [detwc]
void detectCharucoBoardWithoutCalibration()
{
cv::VideoCapture inputVideo;
inputVideo.open(0);
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04f, 0.02f, dictionary);
cv::Ptr<cv::aruco::DetectorParameters> params = cv::aruco::DetectorParameters::create();
params->cornerRefinementMethod = cv::aruco::CORNER_REFINE_NONE;
while (inputVideo.grab()) {
cv::Mat image, imageCopy;
inputVideo.retrieve(image);
image.copyTo(imageCopy);
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f> > markerCorners;
cv::aruco::detectMarkers(image, board->dictionary, markerCorners, markerIds, params);
//or
//cv::aruco::detectMarkers(image, dictionary, markerCorners, markerIds, params);
// if at least one marker detected
if (markerIds.size() > 0) {
cv::aruco::drawDetectedMarkers(imageCopy, markerCorners, markerIds);
//! [charidcorwc]
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(markerCorners, markerIds, image, board, charucoCorners, charucoIds);
//! [charidcorwc]
// if at least one charuco corner detected
if (charucoIds.size() > 0)
cv::aruco::drawDetectedCornersCharuco(imageCopy, charucoCorners, charucoIds, cv::Scalar(255, 0, 0));
}
cv::imshow("out", imageCopy);
char key = (char)cv::waitKey(30);
if (key == 27)
break;
}
}
//! [detwc]
int main(int argc, char* argv[])
{
cv::CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (argc < 2) {
parser.printMessage();
return 0;
}
int choose = parser.get<int>("c");
switch (choose) {
case 1:
createBoard();
std::cout << "An image named BoardImg.jpg is generated in folder containing this file" << std::endl;
break;
case 2:
detectCharucoBoardWithoutCalibration();
break;
case 3:
detectCharucoBoardWithCalibrationPose();
break;
default:
break;
}
return 0;
}
\ No newline at end of file
......@@ -20,6 +20,23 @@ they are very accurate in terms of subpixel accuracy.
When high precision is necessary, such as in camera calibration, Charuco boards are a better option than standard
Aruco boards.
Goal
----
In this tutorial you will learn:
- How to create a charuco board ?
- How to detect the charuco corners without performing camera calibration ?
- How to detect the charuco corners with camera calibration and pose estimation ?
Source code
-----------
You can find this code in `opencv_contrib/modules/aruco/samples/tutorial_charuco_create_detect.cpp`
Here's a sample code of how to achieve all the stuff enumerated at the goal list.
@include samples/tutorial_charuco_create_detect.cpp
ChArUco Board Creation
------
......@@ -28,9 +45,7 @@ The aruco module provides the ```cv::aruco::CharucoBoard``` class that represent
This class, as the rest of ChArUco functionalities, are defined in:
@code{.cpp}
#include <opencv2/aruco/charuco.hpp>
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp charucohdr
To define a ```CharucoBoard```, it is necessary:
......@@ -59,11 +74,7 @@ This can be easily customized by accessing to the ids vector through ```board.id
Once we have our ```CharucoBoard``` object, we can create an image to print it. This can be done with the
<code>CharucoBoard::draw()</code> method:
@code{.cpp}
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::Mat boardImage;
board->draw( cv::Size(600, 500), boardImage, 10, 1 );
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp createBoard
- The first parameter is the size of the output image in pixels. In this case 600x500 pixels. If this is not proportional
to the board dimensions, it will be centered on the image.
......@@ -76,9 +87,9 @@ The output image will be something like this:
![](images/charucoboard.jpg)
A full working example is included in the ```create_board_charuco.cpp``` inside the module samples folder.
A full working example is included in the ```create_board_charuco.cpp``` inside the modules/aruco/samples/create_board_charuco.cpp.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
Note: The create_board_charuco.cpp now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
@code{.cpp}
"_ output path_/chboard.png" -w=5 -h=7 -sl=200 -ml=120 -d=10
@endcode
......@@ -89,69 +100,53 @@ ChArUco Board Detection
When you detect a ChArUco board, what you are actually detecting is each of the chessboard corners of the board.
Each corner on a ChArUco board has a unique identifier (id) assigned. These ids go from 0 to the total number of corners
in the board.
Each corner on a ChArUco board has a unique identifier (id) assigned. These ids go from 0 to the total number of corners in the board.
The steps of charuco board detection can be broken down to the following steps:
So, a detected ChArUco board consists in:
- **Taking input Image**
- ```std::vector<cv::Point2f> charucoCorners``` : list of image positions of the detected corners.
- ```std::vector<int> charucoIds``` : ids for each of the detected corners in ```charucoCorners```.
@snippet samples/tutorial_charuco_create_detect.cpp inputImg
The detection of the ChArUco corners is based on the previous detected markers. So that, first markers are detected, and then
ChArUco corners are interpolated from markers.
The original image where the markers are to be detected. The image is necessary to perform subpixel refinement in the ChArUco corners.
The function that detect the ChArUco corners is ```cv::aruco::interpolateCornersCharuco()``` . This example shows the whole process. First, markers are detected, and then the ChArUco corners are interpolated from these markers.
- **Reading the camera calibration Parameters(only for detection with camera calibration)**
@code{.cpp}
cv::Mat inputImage;
cv::Mat cameraMatrix, distCoeffs;
// camera parameters are read from somewhere
readCameraParameters(cameraMatrix, distCoeffs);
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
...
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f>> markerCorners;
cv::aruco::detectMarkers(inputImage, board.dictionary, markerCorners, markerIds);
// if at least one marker detected
if(markerIds.size() > 0) {
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(markerCorners, markerIds, inputImage, board, charucoCorners, charucoIds, cameraMatrix, distCoeffs);
}
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp matdiscoff
The parameters of the ```interpolateCornersCharuco()``` function are:
- ```markerCorners``` and ```markerIds```: the detected markers from ```detectMarkers()``` function.
- ```inputImage```: the original image where the markers were detected. The image is necessary to perform subpixel refinement
in the ChArUco corners.
- ```board```: the ```CharucoBoard``` object
- ```charucoCorners``` and ```charucoIds```: the output interpolated Charuco corners
- ```cameraMatrix``` and ```distCoeffs```: the optional camera calibration parameters
- The function returns the number of Charuco corners interpolated.
The parameters of readCameraParameters are:
- filename- This is the path to caliberation.txt file which is the output file generated by calibrate_camera_charuco.cpp
- cameraMatrix and distCoeffs- the optional camera calibration parameters
In this case, we have call ```interpolateCornersCharuco()``` providing the camera calibration parameters. However these parameters
are optional. A similar example without these parameters would be:
This function takes these parameters as input and returns a boolean value of whether the camera calibration parameters are valid or not. For detection of corners without calibration, this step is not required.
@code{.cpp}
cv::Mat inputImage;
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
...
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f>> markerCorners;
cv::Ptr<cv::aruco::DetectorParameters> params;
params->cornerRefinementMethod = cv::aruco::CORNER_REFINE_NONE;
cv::aruco::detectMarkers(inputImage, board.dictionary, markerCorners, markerIds, params);
// if at least one marker detected
if(markerIds.size() > 0) {
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(markerCorners, markerIds, inputImage, board, charucoCorners, charucoIds);
}
@endcode
- **Detecting the markers**
@snippet samples/tutorial_charuco_create_detect.cpp dictboard
@snippet samples/tutorial_charuco_create_detect.cpp midcornerdet
The parameters of detectMarkers are:
- image - Input image.
- dictionary - Pointer to the Dictionary/Set of Markers that will be searched.
- markerCorners - vector of detected marker corners.
- markerIds - vector of identifiers of the detected markers
- params - marker detection parameters
The detection of the ChArUco corners is based on the previous detected markers. So that, first markers are detected, and then ChArUco corners are interpolated from markers.
- **Interpolation of charuco corners from markers**
For detection with calibration
@snippet samples/tutorial_charuco_create_detect.cpp charidcor
For detection without calibration
@snippet samples/tutorial_charuco_create_detect.cpp charidcorwc
The function that detect the ChArUco corners is cv::aruco::interpolateCornersCharuco(). This function returns the number of Charuco corners interpolated.
- ```std::vector<cv::Point2f> charucoCorners``` : list of image positions of the detected corners.
- ```std::vector<int> charucoIds``` : ids for each of the detected corners in ```charucoCorners```.
If calibration parameters are provided, the ChArUco corners are interpolated by, first, estimating a rough pose from the ArUco markers
and, then, reprojecting the ChArUco corners back to the image.
......@@ -176,11 +171,9 @@ After the ChArUco corners have been interpolated, a subpixel refinement is perfo
Once we have interpolated the ChArUco corners, we would probably want to draw them to see if their detections are correct.
This can be easily done using the ```drawDetectedCornersCharuco()``` function:
@code{.cpp}
cv::aruco::drawDetectedCornersCharuco(image, charucoCorners, charucoIds, color);
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp detcor
- ```image``` is the image where the corners will be drawn (it will normally be the same image where the corners were detected).
- ```imageCopy``` is the image where the corners will be drawn (it will normally be the same image where the corners were detected).
- The ```outputImage``` will be a clone of ```inputImage``` with the corners drawn.
- ```charucoCorners``` and ```charucoIds``` are the detected Charuco corners from the ```interpolateCornersCharuco()``` function.
- Finally, the last parameter is the (optional) color we want to draw the corners with, of type ```cv::Scalar```.
......@@ -199,43 +192,7 @@ In the presence of occlusion. like in the following image, although some corners
Finally, this is a full example of ChArUco detection (without using calibration parameters):
@code{.cpp}
cv::VideoCapture inputVideo;
inputVideo.open(0);
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
cv::Ptr<cv::aruco::DetectorParameters> params;
params->cornerRefinementMethod = cv::aruco::CORNER_REFINE_NONE;
while (inputVideo.grab()) {
cv::Mat image, imageCopy;
inputVideo.retrieve(image);
image.copyTo(imageCopy);
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>> corners;
cv::aruco::detectMarkers(image, dictionary, corners, ids, params);
// if at least one marker detected
if (ids.size() > 0) {
cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(corners, ids, image, board, charucoCorners, charucoIds);
// if at least one charuco corner detected
if(charucoIds.size() > 0)
cv::aruco::drawDetectedCornersCharuco(imageCopy, charucoCorners, charucoIds, cv::Scalar(255, 0, 0));
}
cv::imshow("out", imageCopy);
char key = (char) cv::waitKey(waitTime);
if (key == 27)
break;
}
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp detwc
Sample video:
......@@ -243,13 +200,15 @@ Sample video:
<iframe width="420" height="315" src="https://www.youtube.com/embed/Nj44m_N_9FY" frameborder="0" allowfullscreen></iframe>
@endhtmlonly
A full working example is included in the ```detect_board_charuco.cpp``` inside the module samples folder.
A full working example is included in the ```detect_board_charuco.cpp``` inside the modules/aruco/samples/detect_board_charuco.cpp.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
@code{.cpp}
-c="_path_/calib.txt" -dp="_path_/detector_params.yml" -w=5 -h=7 -sl=0.04 -ml=0.02 -d=10
@endcode
Here the calib.txt is the output file generated by the calibrate_camera_charuco.cpp.
ChArUco Pose Estimation
------
......@@ -260,9 +219,7 @@ of the ```CharucoBoard``` is placed in the board plane with the Z axis pointing
The function for pose estimation is ```estimatePoseCharucoBoard()```:
@code{.cpp}
cv::aruco::estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec);
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp pose
- The ```charucoCorners``` and ```charucoIds``` parameters are the detected charuco corners from the ```interpolateCornersCharuco()```
function.
......@@ -278,50 +235,9 @@ The axis can be drawn using ```drawAxis()``` to check the pose is correctly esti
A full example of ChArUco detection with pose estimation:
@code{.cpp}
cv::VideoCapture inputVideo;
inputVideo.open(0);
cv::Mat cameraMatrix, distCoeffs;
// camera parameters are read from somewhere
readCameraParameters(cameraMatrix, distCoeffs);
cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);
cv::Ptr<cv::aruco::CharucoBoard> board = cv::aruco::CharucoBoard::create(5, 7, 0.04, 0.02, dictionary);
while (inputVideo.grab()) {
cv::Mat image, imageCopy;
inputVideo.retrieve(image);
image.copyTo(imageCopy);
std::vector<int> ids;
std::vector<std::vector<cv::Point2f>> corners;
cv::aruco::detectMarkers(image, dictionary, corners, ids);
// if at least one marker detected
if (ids.size() > 0) {
std::vector<cv::Point2f> charucoCorners;
std::vector<int> charucoIds;
cv::aruco::interpolateCornersCharuco(corners, ids, image, board, charucoCorners, charucoIds, cameraMatrix, distCoeffs);
// if at least one charuco corner detected
if(charucoIds.size() > 0) {
cv::aruco::drawDetectedCornersCharuco(imageCopy, charucoCorners, charucoIds, cv::Scalar(255, 0, 0));
cv::Vec3d rvec, tvec;
bool valid = cv::aruco::estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec);
// if charuco pose is valid
if(valid)
cv::aruco::drawAxis(imageCopy, cameraMatrix, distCoeffs, rvec, tvec, 0.1);
}
}
cv::imshow("out", imageCopy);
char key = (char) cv::waitKey(waitTime);
if (key == 27)
break;
}
@endcode
@snippet samples/tutorial_charuco_create_detect.cpp detwcp
A full working example is included in the ```detect_board_charuco.cpp``` inside the module samples folder.
A full working example is included in the ```detect_board_charuco.cpp``` inside the modules/aruco/samples/detect_board_charuco.cpp.
Note: The samples now take input via commandline via the [OpenCV Commandline Parser](http://docs.opencv.org/trunk/d0/d2e/classcv_1_1CommandLineParser.html#gsc.tab=0). For this file the example parameters will look like
@code{.cpp}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment