Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
13053d6b
Commit
13053d6b
authored
Aug 23, 2015
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Interface and naming fixes
parent
09286322
Show whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
235 additions
and
85 deletions
+235
-85
xobjdetect.hpp
modules/xobjdetect/include/opencv2/xobjdetect.hpp
+9
-7
cascadeclassifier.h
modules/xobjdetect/src/cascadeclassifier.h
+1
-3
feature_evaluator.cpp
modules/xobjdetect/src/feature_evaluator.cpp
+0
-0
feature_evaluator.hpp
modules/xobjdetect/src/feature_evaluator.hpp
+0
-0
lbpfeatures.h
modules/xobjdetect/src/lbpfeatures.h
+1
-1
precomp.hpp
modules/xobjdetect/src/precomp.hpp
+3
-1
waldboost.cpp
modules/xobjdetect/src/waldboost.cpp
+94
-46
waldboost.hpp
modules/xobjdetect/src/waldboost.hpp
+4
-0
wbdetector.cpp
modules/xobjdetect/src/wbdetector.cpp
+28
-22
wbdetector.hpp
modules/xobjdetect/src/wbdetector.hpp
+77
-0
waldboost_detector.cpp
...objdetect/tools/waldboost_detector/waldboost_detector.cpp
+18
-5
No files found.
modules/xobjdetect/include/opencv2/xobjdetect.hpp
View file @
13053d6b
...
...
@@ -56,21 +56,23 @@ namespace xobjdetect
class
CV_EXPORTS
WBDetector
{
public
:
WBDetector
(
const
std
::
string
&
model_filename
);
virtual
void
read
(
const
FileNode
&
node
)
=
0
;
virtual
void
write
(
FileStorage
&
fs
)
const
=
0
;
void
train
(
v
irtual
v
oid
train
(
const
std
::
string
&
pos_samples
,
const
std
::
string
&
neg_imgs
);
const
std
::
string
&
neg_imgs
)
=
0
;
void
detect
(
v
irtual
v
oid
detect
(
const
Mat
&
img
,
std
::
vector
<
Rect
>
&
bboxes
,
std
::
vector
<
double
>
&
confidences
);
std
::
vector
<
double
>
&
confidences
)
=
0
;
private
:
std
::
string
model_filename_
;
virtual
~
WBDetector
(){}
};
CV_EXPORTS
Ptr
<
WBDetector
>
create_wbdetector
();
}
/* namespace xobjdetect */
}
/* namespace cv */
...
...
modules/xobjdetect/src/cascadeclassifier.h
View file @
13053d6b
...
...
@@ -45,9 +45,7 @@ the use of this software, even if advised of the possibility of such damage.
#ifndef _OPENCV_CASCADECLASSIFIER_H_
#define _OPENCV_CASCADECLASSIFIER_H_
#include <ctime>
#include "traincascade_features.h"
#include "lbpfeatures.h"
#include "precomp.hpp"
#define CC_CASCADE_FILENAME "cascade.xml"
#define CC_PARAMS_FILENAME "params.xml"
...
...
modules/xobjdetect/src/feature
s
.cpp
→
modules/xobjdetect/src/feature
_evaluator
.cpp
View file @
13053d6b
File moved
modules/xobjdetect/src/
traincascade_features.h
→
modules/xobjdetect/src/
feature_evaluator.hpp
View file @
13053d6b
File moved
modules/xobjdetect/src/lbpfeatures.h
View file @
13053d6b
...
...
@@ -45,7 +45,7 @@ the use of this software, even if advised of the possibility of such damage.
#ifndef _OPENCV_LBPFEATURES_H_
#define _OPENCV_LBPFEATURES_H_
#include "
traincascade_features.h
"
#include "
precomp.hpp
"
#define LBPF_NAME "lbpFeatureParams"
...
...
modules/xobjdetect/src/precomp.hpp
View file @
13053d6b
...
...
@@ -72,8 +72,10 @@ the use of this software, even if advised of the possibility of such damage.
#include <cstdio>
#include "cascadeclassifier.h"
#include "
traincascade_features.h
"
#include "
feature_evaluator.hpp
"
#include "lbpfeatures.h"
#include "waldboost.hpp"
#include "wbdetector.hpp"
#include <opencv2/xobjdetect.hpp>
#endif
/* __OPENCV_XOBJDETECT_PRECOMP_HPP__ */
modules/xobjdetect/src/waldboost.cpp
View file @
13053d6b
...
...
@@ -271,7 +271,6 @@ void WaldBoost::fit(Mat& data_pos, Mat& data_neg)
thresholds_
.
push_back
(
min_threshold
);
polarities_
.
push_back
(
min_polarity
);
feature_ignore
[
min_feature_ind
]
=
true
;
cascade_thresholds_
.
push_back
(
-
1
);
double
loss
=
0
;
// Update positive weights
...
...
@@ -291,13 +290,48 @@ void WaldBoost::fit(Mat& data_pos, Mat& data_neg)
neg_trace
(
0
,
j
)
+=
alpha
*
label
;
loss
+=
exp
(
+
neg_trace
(
0
,
j
))
/
(
2.0
f
*
data_neg
.
cols
);
}
double
cascade_threshold
=
-
1
;
minMaxIdx
(
pos_trace
,
&
cascade_threshold
);
cascade_thresholds_
.
push_back
(
cascade_threshold
);
std
::
cerr
<<
"i="
<<
std
::
setw
(
4
)
<<
i
;
std
::
cerr
<<
" feat="
<<
std
::
setw
(
5
)
<<
min_feature_ind
;
std
::
cerr
<<
" thr="
<<
std
::
setw
(
3
)
<<
threshold_q
;
std
::
cerr
<<
" casthr="
<<
std
::
fixed
<<
std
::
setprecision
(
3
)
<<
cascade_threshold
;
std
::
cerr
<<
" alpha="
<<
std
::
fixed
<<
std
::
setprecision
(
3
)
<<
alpha
<<
" err="
<<
std
::
fixed
<<
std
::
setprecision
(
3
)
<<
min_err
<<
" loss="
<<
std
::
scientific
<<
loss
<<
std
::
endl
;
//int pos = 0;
//for (int j = 0; j < data_pos.cols; ++j) {
// if (pos_trace(0, j) > cascade_threshold - 0.5) {
// pos_trace(0, pos) = pos_trace(0, j);
// data_pos.col(j).copyTo(data_pos.col(pos));
// pos_weights(0, pos) = pos_weights(0, j);
// pos += 1;
// }
//}
//std::cerr << "pos " << data_pos.cols << "/" << pos << std::endl;
//pos_trace = pos_trace.colRange(0, pos);
//data_pos = data_pos.colRange(0, pos);
//pos_weights = pos_weights.colRange(0, pos);
int
pos
=
0
;
for
(
int
j
=
0
;
j
<
data_neg
.
cols
;
++
j
)
{
if
(
neg_trace
(
0
,
j
)
>
cascade_threshold
-
0.5
)
{
neg_trace
(
0
,
pos
)
=
neg_trace
(
0
,
j
);
data_neg
.
col
(
j
).
copyTo
(
data_neg
.
col
(
pos
));
neg_weights
(
0
,
pos
)
=
neg_weights
(
0
,
j
);
pos
+=
1
;
}
}
std
::
cerr
<<
"neg "
<<
data_neg
.
cols
<<
"/"
<<
pos
<<
std
::
endl
;
neg_trace
=
neg_trace
.
colRange
(
0
,
pos
);
data_neg
=
data_neg
.
colRange
(
0
,
pos
);
neg_weights
=
neg_weights
.
colRange
(
0
,
pos
);
if
(
loss
<
1e-50
||
min_err
>
0.5
)
{
std
::
cerr
<<
"Stopping early"
<<
std
::
endl
;
weak_count_
=
i
+
1
;
...
...
@@ -313,72 +347,86 @@ void WaldBoost::fit(Mat& data_pos, Mat& data_neg)
int
WaldBoost
::
predict
(
Ptr
<
CvFeatureEvaluator
>
eval
,
float
*
h
)
const
{
double
THR
=
-
6
;
assert
(
feature_indices_
.
size
()
==
size_t
(
weak_count_
));
assert
(
cascade_thresholds_
.
size
()
==
size_t
(
weak_count_
));
float
res
=
0
;
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
int
count
=
weak_count_
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
float
val
=
(
*
eval
)(
feature_indices_
[
i
]);
int
label
=
polarities_
[
i
]
*
(
val
-
thresholds_
[
i
])
>
0
?
+
1
:
-
1
;
res
+=
alphas_
[
i
]
*
label
;
if
(
res
<
THR
)
{
if
(
res
<
cascade_thresholds_
[
i
]
)
{
return
-
1
;
}
}
*
h
=
res
;
return
res
>
THR
?
+
1
:
-
1
;
return
res
>
cascade_thresholds_
[
count
-
1
]
?
+
1
:
-
1
;
}
void
WaldBoost
::
save
(
const
std
::
string
&
filename
)
void
WaldBoost
::
write
(
FileStorage
&
fs
)
const
{
std
::
ofstream
f
(
filename
.
c_str
());
f
<<
weak_count_
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
thresholds_
.
size
();
++
i
)
{
f
<<
thresholds_
[
i
]
<<
" "
;
}
f
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
alphas_
.
size
();
++
i
)
{
f
<<
alphas_
[
i
]
<<
" "
;
}
f
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
polarities_
.
size
();
++
i
)
{
f
<<
polarities_
[
i
]
<<
" "
;
}
f
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
cascade_thresholds_
.
size
();
++
i
)
{
f
<<
cascade_thresholds_
[
i
]
<<
" "
;
}
f
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
feature_indices_
.
size
();
++
i
)
{
f
<<
feature_indices_
[
i
]
<<
" "
;
}
f
<<
std
::
endl
;
fs
<<
"waldboost"
<<
"{"
;
fs
<<
"waldboost_params"
<<
"{"
<<
"weak_count"
<<
weak_count_
<<
"}"
;
fs
<<
"thresholds"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
thresholds_
.
size
();
++
i
)
fs
<<
thresholds_
[
i
];
fs
<<
"]"
;
fs
<<
"alphas"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
alphas_
.
size
();
++
i
)
fs
<<
alphas_
[
i
];
fs
<<
"]"
;
fs
<<
"polarities"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
polarities_
.
size
();
++
i
)
fs
<<
polarities_
[
i
];
fs
<<
"]"
;
fs
<<
"cascade_thresholds"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
cascade_thresholds_
.
size
();
++
i
)
fs
<<
cascade_thresholds_
[
i
];
fs
<<
"]"
;
fs
<<
"feature_indices"
<<
"["
;
for
(
size_t
i
=
0
;
i
<
feature_indices_
.
size
();
++
i
)
fs
<<
feature_indices_
[
i
];
fs
<<
"]"
;
fs
<<
"}"
;
}
void
WaldBoost
::
load
(
const
std
::
string
&
filenam
e
)
void
WaldBoost
::
read
(
const
FileNode
&
nod
e
)
{
std
::
ifstream
f
(
filename
.
c_str
());
f
>>
weak_count_
;
weak_count_
=
(
int
)(
node
[
"waldboost_params"
][
"weak_count"
]);
thresholds_
.
resize
(
weak_count_
);
alphas_
.
resize
(
weak_count_
);
polarities_
.
resize
(
weak_count_
);
cascade_thresholds_
.
resize
(
weak_count_
);
feature_indices_
.
resize
(
weak_count_
);
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
f
>>
thresholds_
[
i
];
}
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
f
>>
alphas_
[
i
];
}
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
f
>>
polarities_
[
i
];
}
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
f
>>
cascade_thresholds_
[
i
];
}
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
)
{
f
>>
feature_indices_
[
i
];
}
FileNodeIterator
n
;
n
=
node
[
"thresholds"
].
begin
();
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
,
++
n
)
*
n
>>
thresholds_
[
i
];
n
=
node
[
"alphas"
].
begin
();
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
,
++
n
)
*
n
>>
alphas_
[
i
];
n
=
node
[
"polarities"
].
begin
();
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
,
++
n
)
*
n
>>
polarities_
[
i
];
n
=
node
[
"cascade_thresholds"
].
begin
();
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
,
++
n
)
*
n
>>
cascade_thresholds_
[
i
];
n
=
node
[
"feature_indices"
].
begin
();
for
(
int
i
=
0
;
i
<
weak_count_
;
++
i
,
++
n
)
*
n
>>
feature_indices_
[
i
];
}
void
WaldBoost
::
reset
(
int
weak_count
)
...
...
modules/xobjdetect/src/waldboost.hpp
View file @
13053d6b
...
...
@@ -72,6 +72,10 @@ public:
int
predict
(
Ptr
<
CvFeatureEvaluator
>
eval
,
float
*
h
)
const
;
void
save
(
const
std
::
string
&
filename
);
void
load
(
const
std
::
string
&
filename
);
void
read
(
const
FileNode
&
node
);
void
write
(
FileStorage
&
fs
)
const
;
void
reset
(
int
weak_count
);
~
WaldBoost
();
...
...
modules/xobjdetect/src/detector.cpp
→
modules/xobjdetect/src/
wb
detector.cpp
View file @
13053d6b
...
...
@@ -52,10 +52,6 @@ using std::string;
namespace
cv
{
namespace
xobjdetect
{
WBDetector
::
WBDetector
(
const
string
&
model_filename
)
:
model_filename_
(
model_filename
)
{}
static
vector
<
Mat
>
sample_patches
(
const
string
&
path
,
int
n_rows
,
...
...
@@ -93,13 +89,24 @@ static vector<Mat> read_imgs(const string& path)
return
imgs
;
}
void
WBDetector
::
train
(
void
WBDetectorImpl
::
read
(
const
FileNode
&
node
)
{
boost_
.
read
(
node
);
}
void
WBDetectorImpl
::
write
(
FileStorage
&
fs
)
const
{
boost_
.
write
(
fs
);
}
void
WBDetectorImpl
::
train
(
const
string
&
pos_samples_path
,
const
string
&
neg_imgs_path
)
{
vector
<
Mat
>
pos_imgs
=
read_imgs
(
pos_samples_path
);
vector
<
Mat
>
neg_imgs
=
sample_patches
(
neg_imgs_path
,
24
,
24
,
pos_imgs
.
size
());
vector
<
Mat
>
neg_imgs
=
sample_patches
(
neg_imgs_path
,
24
,
24
,
pos_imgs
.
size
()
*
10
);
assert
(
pos_imgs
.
size
());
assert
(
neg_imgs
.
size
());
...
...
@@ -111,16 +118,15 @@ void WBDetector::train(
eval
->
init
(
CvFeatureParams
::
create
(),
1
,
Size
(
24
,
24
));
n_features
=
eval
->
getNumFeatures
();
const
int
stages
[]
=
{
32
,
64
,
128
,
256
,
512
,
1024
,
2048
,
4096
};
const
int
stages
[]
=
{
64
,
128
,
256
,
512
,
1024
};
const
int
stage_count
=
sizeof
(
stages
)
/
sizeof
(
*
stages
);
const
int
stage_neg
=
5000
;
const
int
max_per_image
=
25
;
const
int
stage_neg
=
pos_imgs
.
size
()
*
5
;
const
int
max_per_image
=
100
;
const
float
scales_arr
[]
=
{
.3
f
,
.4
f
,
.5
f
,
.6
f
,
.7
f
,
.8
f
,
.9
f
,
1.0
f
};
const
vector
<
float
>
scales
(
scales_arr
,
scales_arr
+
sizeof
(
scales_arr
)
/
sizeof
(
*
scales_arr
));
WaldBoost
boost
;
vector
<
String
>
neg_filenames
;
glob
(
neg_imgs_path
,
neg_filenames
);
...
...
@@ -133,22 +139,22 @@ void WBDetector::train(
neg_data
=
Mat1b
(
n_features
,
(
int
)
neg_imgs
.
size
());
for
(
size_t
k
=
0
;
k
<
pos_imgs
.
size
();
++
k
)
{
eval
->
setImage
(
pos_imgs
[
k
],
+
1
,
0
,
boost
.
get_feature_indices
());
eval
->
setImage
(
pos_imgs
[
k
],
+
1
,
0
,
boost
_
.
get_feature_indices
());
for
(
int
j
=
0
;
j
<
n_features
;
++
j
)
{
pos_data
.
at
<
uchar
>
(
j
,
(
int
)
k
)
=
(
uchar
)(
*
eval
)(
j
);
}
}
for
(
size_t
k
=
0
;
k
<
neg_imgs
.
size
();
++
k
)
{
eval
->
setImage
(
neg_imgs
[
k
],
0
,
0
,
boost
.
get_feature_indices
());
eval
->
setImage
(
neg_imgs
[
k
],
0
,
0
,
boost
_
.
get_feature_indices
());
for
(
int
j
=
0
;
j
<
n_features
;
++
j
)
{
neg_data
.
at
<
uchar
>
(
j
,
(
int
)
k
)
=
(
uchar
)(
*
eval
)(
j
);
}
}
boost
.
reset
(
stages
[
i
]);
boost
.
fit
(
pos_data
,
neg_data
);
boost
_
.
reset
(
stages
[
i
]);
boost
_
.
fit
(
pos_data
,
neg_data
);
if
(
i
+
1
==
stage_count
)
{
break
;
...
...
@@ -162,7 +168,7 @@ void WBDetector::train(
Mat
img
=
imread
(
neg_filenames
[
img_i
],
CV_LOAD_IMAGE_GRAYSCALE
);
vector
<
Rect
>
bboxes
;
Mat1f
confidences
;
boost
.
detect
(
eval
,
img
,
scales
,
bboxes
,
confidences
);
boost
_
.
detect
(
eval
,
img
,
scales
,
bboxes
,
confidences
);
if
(
confidences
.
rows
>
0
)
{
Mat1i
indices
;
...
...
@@ -185,18 +191,13 @@ void WBDetector::train(
cerr
<<
"bootstrapped "
<<
bootstrap_count
<<
" windows from "
<<
(
img_i
+
1
)
<<
" images"
<<
endl
;
}
boost
.
save
(
model_filename_
);
}
void
WBDetector
::
detect
(
void
WBDetector
Impl
::
detect
(
const
Mat
&
img
,
vector
<
Rect
>
&
bboxes
,
vector
<
double
>
&
confidences
)
{
WaldBoost
boost
;
boost
.
load
(
model_filename_
);
Mat
test_img
=
img
.
clone
();
bboxes
.
clear
();
confidences
.
clear
();
...
...
@@ -207,9 +208,14 @@ void WBDetector::detect(
Ptr
<
CvFeatureParams
>
params
=
CvFeatureParams
::
create
();
Ptr
<
CvFeatureEvaluator
>
eval
=
CvFeatureEvaluator
::
create
();
eval
->
init
(
params
,
1
,
Size
(
24
,
24
));
boost
.
detect
(
eval
,
img
,
scales
,
bboxes
,
confidences
);
boost
_
.
detect
(
eval
,
img
,
scales
,
bboxes
,
confidences
);
assert
(
confidences
.
size
()
==
bboxes
.
size
());
}
Ptr
<
WBDetector
>
create_wbdetector
()
{
return
Ptr
<
WBDetector
>
(
new
WBDetectorImpl
());
}
}
}
modules/xobjdetect/src/wbdetector.hpp
0 → 100644
View file @
13053d6b
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_XOBJDETECT_DETECTOR_HPP__
#define __OPENCV_XOBJDETECT_DETECTOR_HPP__
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <vector>
#include <string>
#include "precomp.hpp"
namespace
cv
{
namespace
xobjdetect
{
class
WBDetectorImpl
:
public
WBDetector
{
public
:
virtual
void
read
(
const
FileNode
&
node
);
virtual
void
write
(
FileStorage
&
fs
)
const
;
virtual
void
train
(
const
std
::
string
&
pos_samples
,
const
std
::
string
&
neg_imgs
);
virtual
void
detect
(
const
Mat
&
img
,
std
::
vector
<
Rect
>
&
bboxes
,
std
::
vector
<
double
>
&
confidences
);
private
:
WaldBoost
boost_
;
};
}
/* namespace xobjdetect */
}
/* namespace cv */
#endif
/* __OPENCV_XOBJDETECT_DETECTOR_HPP__ */
modules/xobjdetect/tools/waldboost_detector/waldboost_detector.cpp
View file @
13053d6b
...
...
@@ -2,6 +2,7 @@
#include <opencv2/imgcodecs/imgcodecs_c.h>
#include <opencv2/imgproc.hpp>
#include <iostream>
#include <cstdio>
using
namespace
std
;
using
namespace
cv
;
using
namespace
cv
::
xobjdetect
;
...
...
@@ -10,20 +11,32 @@ int main(int argc, char **argv)
{
if
(
argc
<
5
)
{
cerr
<<
"Usage: "
<<
argv
[
0
]
<<
" train <model_filename> <pos_path> <neg_path>"
<<
endl
;
cerr
<<
" "
<<
argv
[
0
]
<<
" detect <model_filename> <img_filename> <out_filename>"
<<
endl
;
cerr
<<
" "
<<
argv
[
0
]
<<
" detect <model_filename> <img_filename> <out_filename>
<labelling_filename>
"
<<
endl
;
return
0
;
}
string
mode
=
argv
[
1
];
WBDetector
detector
(
argv
[
2
]
);
Ptr
<
WBDetector
>
detector
=
create_wbdetector
(
);
if
(
mode
==
"train"
)
{
detector
.
train
(
argv
[
3
],
argv
[
4
]);
assert
(
argc
==
5
);
detector
->
train
(
argv
[
3
],
argv
[
4
]);
FileStorage
fs
(
argv
[
2
],
FileStorage
::
WRITE
);
detector
->
write
(
fs
);
}
else
if
(
mode
==
"detect"
)
{
cerr
<<
"detect"
<<
endl
;
assert
(
argc
==
6
)
;
vector
<
Rect
>
bboxes
;
vector
<
double
>
confidences
;
Mat
img
=
imread
(
argv
[
3
],
CV_LOAD_IMAGE_GRAYSCALE
);
detector
.
detect
(
img
,
bboxes
,
confidences
);
FileStorage
fs
(
argv
[
2
],
FileStorage
::
READ
);
detector
->
read
(
fs
[
"waldboost"
]);
detector
->
detect
(
img
,
bboxes
,
confidences
);
FILE
*
fhandle
=
fopen
(
argv
[
5
],
"a"
);
for
(
size_t
i
=
0
;
i
<
bboxes
.
size
();
++
i
)
{
Rect
o
=
bboxes
[
i
];
fprintf
(
fhandle
,
"%s;%u;%u;%u;%u;%lf
\n
"
,
argv
[
3
],
o
.
x
,
o
.
y
,
o
.
width
,
o
.
height
,
confidences
[
i
]);
}
for
(
size_t
i
=
0
;
i
<
bboxes
.
size
();
++
i
)
{
rectangle
(
img
,
bboxes
[
i
],
Scalar
(
255
,
0
,
0
));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment