Commit 12e1e11d authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

Merge pull request #68 from tpietruszka/deepflow

Deepflow implementation (and optical flow testing again)
parents 0f9cb5f8 d07bf35b
...@@ -50,4 +50,67 @@ See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SA ...@@ -50,4 +50,67 @@ See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SA
* An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp * An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp
optflow::OpticalFlowDeepFlow
-----------------------------
DeepFlow optical flow algorithm implementation.
.. ocv:class:: optflow::OpticalFlowDeepFlow: public DenseOpticalFlow
The class implements the DeepFlow optical flow algorithm described in [Weinzaepfel2013]_ . See also http://lear.inrialpes.fr/src/deepmatching/ .
Parameters - class fields - that may be modified after creating a class instance:
.. ocv:member:: float alpha
Smoothness assumption weight
.. ocv:member:: float delta
Color constancy assumption weight
.. ocv:member:: float gamma
Gradient constancy weight
.. ocv:member:: float sigma
Gaussian smoothing parameter
.. ocv:member:: int minSize
Minimal dimension of an image in the pyramid (next, smaller images in the pyramid are
generated until one of the dimensions reaches this size)
.. ocv:member:: float downscaleFactor
Scaling factor in the image pyramid (must be < 1)
.. ocv:member:: int fixedPointIterations
How many iterations on each level of the pyramid
.. ocv:member:: int sorIterations
Iterations of Succesive Over-Relaxation (solver)
.. ocv:member:: float omega
Relaxation factor in SOR
optflow::createOptFlow_DeepFlow
---------------------------------
Create an OpticalFlowDeepFlow instance
.. ocv:function:: Ptr<DenseOpticalFlow> optflow::createOptFlow_DeepFlow()
Returns a pointer to a ``DenseOpticalFlow`` instance - see ``DenseOpticalFlow::calc()``
.. [Tao2012] Michael Tao, Jiamin Bai, Pushmeet Kohli and Sylvain Paris. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012) .. [Tao2012] Michael Tao, Jiamin Bai, Pushmeet Kohli and Sylvain Paris. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012)
.. [Weinzaepfel2013] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow: Large Displacement Optical Flow with Deep Matching,” 2013 IEEE Int. Conf. Comput. Vis., pp. 1385–1392, Dec. 2013.
...@@ -11,3 +11,4 @@ The opencv_optflow module includes different algorithms for tracking points ...@@ -11,3 +11,4 @@ The opencv_optflow module includes different algorithms for tracking points
dense_optflow dense_optflow
motion_templates motion_templates
optflow_io
Optical flow input / output
============================
Functions reading and writing .flo files in "Middlebury" format, see: [MiddleburyFlo]_
readOpticalFlow
-----------------
Read a .flo file
.. ocv:function:: Mat readOpticalFlow( const String& path )
:param path: Path to the file to be loaded
The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
Resulting ``Mat`` has a type ``CV_32FC2`` - floating-point, 2-channel.
First channel corresponds to the flow in the horizontal direction (u), second - vertical (v).
writeOpticalFlow
-----------------
Write a .flo to disk
.. ocv:function:: bool writeOpticalFlow( const String& path, InputArray flow )
:param path: Path to the file to be written
:param flow: Flow field to be stored
The function stores a flow field in a file, returns ``true`` on success, ``false`` otherwise.
The flow field must be a 2-channel, floating-point matrix (``CV_32FC2``).
First channel corresponds to the flow in the horizontal direction (u), second - vertical (v).
.. [MiddleburyFlo] http://vision.middlebury.edu/flow/code/flow-code/README.txt
\ No newline at end of file
...@@ -41,6 +41,7 @@ the use of this software, even if advised of the possibility of such damage. ...@@ -41,6 +41,7 @@ the use of this software, even if advised of the possibility of such damage.
#define __OPENCV_OPTFLOW_HPP__ #define __OPENCV_OPTFLOW_HPP__
#include "opencv2/core.hpp" #include "opencv2/core.hpp"
#include "opencv2/video.hpp"
namespace cv namespace cv
{ {
...@@ -58,7 +59,25 @@ CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray ...@@ -58,7 +59,25 @@ CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray
int upscale_averaging_radius, double upscale_sigma_dist, int upscale_averaging_radius, double upscale_sigma_dist,
double upscale_sigma_color, double speed_up_thr ); double upscale_sigma_color, double speed_up_thr );
} //! reads optical flow from a file, Middlebury format:
// http://vision.middlebury.edu/flow/code/flow-code/README.txt
CV_EXPORTS_W Mat readOpticalFlow( const String& path );
//! writes optical flow to a file, Middlebury format
CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
// DeepFlow implementation, based on:
// P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “DeepFlow: Large Displacement Optical Flow with Deep Matching,”
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_DeepFlow();
// Additional interface to the SimpleFlow algorithm - calcOpticalFlowSF()
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SimpleFlow();
// Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback()
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
} //optflow
} }
#include "opencv2/optflow/motempl.hpp" #include "opencv2/optflow/motempl.hpp"
......
#include "opencv2/highgui.hpp"
#include "opencv2/video.hpp"
#include "opencv2/optflow.hpp"
#include <fstream>
using namespace std;
using namespace cv;
using namespace optflow;
const String keys = "{help h usage ? | | print this message }"
"{@image1 | | image1 }"
"{@image2 | | image2 }"
"{@algorithm | | [farneback, simpleflow, tvl1 or deepflow] }"
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
"{m measure |endpoint| error measure - [endpoint or angular] }"
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
"{d display | | display additional info images (pauses program execution) }";
inline bool isFlowCorrect( const Point2f u )
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9);
}
inline bool isFlowCorrect( const Point3f u )
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && !cvIsNaN(u.z) && (fabs(u.x) < 1e9) && (fabs(u.y) < 1e9)
&& (fabs(u.z) < 1e9);
}
static Mat endpointError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
Mat result(flow1.size(), CV_32FC1);
for ( int i = 0; i < flow1.rows; ++i )
{
for ( int j = 0; j < flow1.cols; ++j )
{
const Point2f u1 = flow1(i, j);
const Point2f u2 = flow2(i, j);
if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
{
const Point2f diff = u1 - u2;
result.at<float>(i, j) = sqrt((float)diff.ddot(diff)); //distance
} else
result.at<float>(i, j) = NAN;
}
}
return result;
}
static Mat angularError( const Mat_<Point2f>& flow1, const Mat_<Point2f>& flow2 )
{
Mat result(flow1.size(), CV_32FC1);
for ( int i = 0; i < flow1.rows; ++i )
{
for ( int j = 0; j < flow1.cols; ++j )
{
const Point2f u1_2d = flow1(i, j);
const Point2f u2_2d = flow2(i, j);
const Point3f u1(u1_2d.x, u1_2d.y, 1);
const Point3f u2(u2_2d.x, u2_2d.y, 1);
if ( isFlowCorrect(u1) && isFlowCorrect(u2) )
result.at<float>(i, j) = acos((float)(u1.ddot(u2) / norm(u1) * norm(u2)));
else
result.at<float>(i, j) = NAN;
}
}
return result;
}
// what fraction of pixels have errors higher than given threshold?
static float stat_RX( Mat errors, float threshold, Mat mask )
{
CV_Assert(errors.size() == mask.size());
CV_Assert(mask.depth() == CV_8U);
int count = 0, all = 0;
for ( int i = 0; i < errors.rows; ++i )
{
for ( int j = 0; j < errors.cols; ++j )
{
if ( mask.at<char>(i, j) != 0 )
{
++all;
if ( errors.at<float>(i, j) > threshold )
++count;
}
}
}
return (float)count / all;
}
static float stat_AX( Mat hist, int cutoff_count, float max_value )
{
int counter = 0;
int bin = 0;
int bin_count = hist.rows;
while ( bin < bin_count && counter < cutoff_count )
{
counter += (int) hist.at<float>(bin, 0);
++bin;
}
return (float) bin / bin_count * max_value;
}
static void calculateStats( Mat errors, Mat mask = Mat(), bool display_images = false )
{
float R_thresholds[] = { 0.5f, 1.f, 2.f, 5.f, 10.f };
float A_thresholds[] = { 0.5f, 0.75f, 0.95f };
if ( mask.empty() )
mask = Mat::ones(errors.size(), CV_8U);
CV_Assert(errors.size() == mask.size());
CV_Assert(mask.depth() == CV_8U);
//displaying the mask
if(display_images)
{
namedWindow( "Region mask", WINDOW_AUTOSIZE );
imshow( "Region mask", mask );
}
//mean and std computation
Scalar s_mean, s_std;
float mean, std;
meanStdDev(errors, s_mean, s_std, mask);
mean = (float)s_mean[0];
std = (float)s_std[0];
printf("Average: %.2f\nStandard deviation: %.2f\n", mean, std);
//RX stats - displayed in percent
float R;
int R_thresholds_count = sizeof(R_thresholds) / sizeof(float);
for ( int i = 0; i < R_thresholds_count; ++i )
{
R = stat_RX(errors, R_thresholds[i], mask);
printf("R%.1f: %.2f%%\n", R_thresholds[i], R * 100);
}
//AX stats
double max_value;
minMaxLoc(errors, NULL, &max_value, NULL, NULL, mask);
Mat hist;
const int n_images = 1;
const int channels[] = { 0 };
const int n_dimensions = 1;
const int hist_bins[] = { 1024 };
const float iranges[] = { 0, (float) max_value };
const float* ranges[] = { iranges };
const bool uniform = true;
const bool accumulate = false;
calcHist(&errors, n_images, channels, mask, hist, n_dimensions, hist_bins, ranges, uniform,
accumulate);
int all_pixels = countNonZero(mask);
int cutoff_count;
float A;
int A_thresholds_count = sizeof(A_thresholds) / sizeof(float);
for ( int i = 0; i < A_thresholds_count; ++i )
{
cutoff_count = (int) (floor(A_thresholds[i] * all_pixels + 0.5f));
A = stat_AX(hist, cutoff_count, (float) max_value);
printf("A%.2f: %.2f\n", A_thresholds[i], A);
}
}
static Mat flowToDisplay(const Mat flow)
{
Mat flow_split[2];
Mat magnitude, angle;
Mat hsv_split[3], hsv, rgb;
split(flow, flow_split);
cartToPolar(flow_split[0], flow_split[1], magnitude, angle, true);
normalize(magnitude, magnitude, 0, 1, NORM_MINMAX);
hsv_split[0] = angle; // already in degrees - no normalization needed
hsv_split[1] = Mat::ones(angle.size(), angle.type());
hsv_split[2] = magnitude;
merge(hsv_split, 3, hsv);
cvtColor(hsv, rgb, COLOR_HSV2BGR);
return rgb;
}
int main( int argc, char** argv )
{
CommandLineParser parser(argc, argv, keys);
parser.about("OpenCV optical flow evaluation app");
if ( parser.has("help") || argc < 4 )
{
parser.printMessage();
printf("EXAMPLES:\n");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback -d \n");
printf("\t - compute flow field between im1 and im2 with farneback's method and display it");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png simpleflow groundtruth.flo \n");
printf("\t - compute error statistics given the groundtruth; all pixels, endpoint error measure");
printf("./example_optflow_optical_flow_evaluation im1.png im2.png farneback groundtruth.flo -m=angular -r=untextured \n");
printf("\t - as before, but with changed error measure and stats computed only about \"untextured\" areas");
printf("\n\n Flow file format description: http://vision.middlebury.edu/flow/code/flow-code/README.txt\n\n");
return 0;
}
String i1_path = parser.get<String>(0);
String i2_path = parser.get<String>(1);
String method = parser.get<String>(2);
String groundtruth_path = parser.get<String>(3);
String error_measure = parser.get<String>("measure");
String region = parser.get<String>("region");
bool display_images = parser.has("display");
if ( !parser.check() )
{
parser.printErrors();
return 0;
}
Mat i1, i2;
Mat_<Point2f> flow, ground_truth;
Mat computed_errors;
i1 = imread(i1_path, 1);
i2 = imread(i2_path, 1);
if ( !i1.data || !i2.data )
{
printf("No image data \n");
return -1;
}
if ( i1.size() != i2.size() || i1.channels() != i2.channels() )
{
printf("Dimension mismatch between input images\n");
return -1;
}
// 8-bit images expected by all algorithms
if ( i1.depth() != CV_8U )
i1.convertTo(i1, CV_8U);
if ( i2.depth() != CV_8U )
i2.convertTo(i2, CV_8U);
if ( (method == "farneback" || method == "tvl1" || method == "deepflow") && i1.channels() == 3 )
{ // 1-channel images are expected
cvtColor(i1, i1, COLOR_BGR2GRAY);
cvtColor(i2, i2, COLOR_BGR2GRAY);
} else if ( method == "simpleflow" && i1.channels() == 1 )
{ // 3-channel images expected
cvtColor(i1, i1, COLOR_GRAY2BGR);
cvtColor(i2, i2, COLOR_GRAY2BGR);
}
flow = Mat(i1.size[0], i1.size[1], CV_32FC2);
Ptr<DenseOpticalFlow> algorithm;
if ( method == "farneback" )
algorithm = createOptFlow_Farneback();
else if ( method == "simpleflow" )
algorithm = createOptFlow_SimpleFlow();
else if ( method == "tvl1" )
algorithm = createOptFlow_DualTVL1();
else if ( method == "deepflow" )
algorithm = createOptFlow_DeepFlow();
else
{
printf("Wrong method!\n");
parser.printMessage();
return -1;
}
double startTick, time;
startTick = (double) getTickCount(); // measure time
algorithm->calc(i1, i2, flow);
time = ((double) getTickCount() - startTick) / getTickFrequency();
printf("\nTime [s]: %.3f\n", time);
if(display_images)
{
Mat flow_image = flowToDisplay(flow);
namedWindow( "Computed flow", WINDOW_AUTOSIZE );
imshow( "Computed flow", flow_image );
}
if ( !groundtruth_path.empty() )
{ // compare to ground truth
ground_truth = optflow::readOpticalFlow(groundtruth_path);
if ( flow.size() != ground_truth.size() || flow.channels() != 2
|| ground_truth.channels() != 2 )
{
printf("Dimension mismatch between the computed flow and the provided ground truth\n");
return -1;
}
if ( error_measure == "endpoint" )
computed_errors = endpointError(flow, ground_truth);
else if ( error_measure == "angular" )
computed_errors = angularError(flow, ground_truth);
else
{
printf("Invalid error measure! Available options: endpoint, angular\n");
return -1;
}
Mat mask;
if( region == "all" )
mask = Mat::ones(ground_truth.size(), CV_8U) * 255;
else if ( region == "discontinuities" )
{
Mat truth_merged, grad_x, grad_y, gradient;
vector<Mat> truth_split;
split(ground_truth, truth_split);
truth_merged = truth_split[0] + truth_split[1];
Sobel( truth_merged, grad_x, CV_16S, 1, 0, -1, 1, 0, BORDER_REPLICATE );
grad_x = abs(grad_x);
Sobel( truth_merged, grad_y, CV_16S, 0, 1, 1, 1, 0, BORDER_REPLICATE );
grad_y = abs(grad_y);
addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!
Scalar s_mean;
s_mean = mean(gradient);
double threshold = s_mean[0]; // threshold value arbitrary
mask = gradient > threshold;
dilate(mask, mask, Mat::ones(9, 9, CV_8U));
}
else if ( region == "untextured" )
{
Mat i1_grayscale, grad_x, grad_y, gradient;
if( i1.channels() == 3 )
cvtColor(i1, i1_grayscale, COLOR_BGR2GRAY);
else
i1_grayscale = i1;
Sobel( i1_grayscale, grad_x, CV_16S, 1, 0, 7 );
grad_x = abs(grad_x);
Sobel( i1_grayscale, grad_y, CV_16S, 0, 1, 7 );
grad_y = abs(grad_y);
addWeighted(grad_x, 0.5, grad_y, 0.5, 0, gradient); //approximation!
GaussianBlur(gradient, gradient, Size(5,5), 1, 1);
Scalar s_mean;
s_mean = mean(gradient);
// arbitrary threshold value used - could be determined statistically from the image?
double threshold = 1000;
mask = gradient < threshold;
dilate(mask, mask, Mat::ones(3, 3, CV_8U));
}
else
{
printf("Invalid region selected! Available options: all, discontinuities, untextured");
return -1;
}
//masking out NaNs and incorrect GT values
Mat truth_split[2];
split(ground_truth, truth_split);
Mat abs_mask = Mat((abs(truth_split[0]) < 1e9) & (abs(truth_split[1]) < 1e9));
Mat nan_mask = Mat((truth_split[0]==truth_split[0]) & (truth_split[1] == truth_split[1]));
bitwise_and(abs_mask, nan_mask, nan_mask);
bitwise_and(nan_mask, mask, mask); //including the selected region
if(display_images) // display difference between computed and GT flow
{
Mat difference = ground_truth - flow;
Mat masked_difference;
difference.copyTo(masked_difference, mask);
Mat flow_image = flowToDisplay(masked_difference);
namedWindow( "Error map", WINDOW_AUTOSIZE );
imshow( "Error map", flow_image );
}
printf("Using %s error measure\n", error_measure.c_str());
calculateStats(computed_errors, mask, display_images);
}
if(display_images) // wait for the user to see all the images
waitKey(0);
return 0;
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <opencv2/highgui.hpp>
namespace cv
{
namespace optflow
{
class OpticalFlowDeepFlow: public DenseOpticalFlow
{
public:
OpticalFlowDeepFlow();
void calc( InputArray I0, InputArray I1, InputOutputArray flow );
void collectGarbage();
// AlgorithmInfo* info() const;
protected:
float sigma; // Gaussian smoothing parameter
int minSize; // minimal dimension of an image in the pyramid
float downscaleFactor; // scaling factor in the pyramid
int fixedPointIterations; // during each level of the pyramid
int sorIterations; // iterations of SOR
float alpha; // smoothness assumption weight
float delta; // color constancy weight
float gamma; // gradient constancy weight
float omega; // relaxation factor in SOR
float zeta; // added to the denomimnator of theta_0 (normaliation of the data term)
float epsilon; // robust penalizer const
int maxLayers; // max amount of layers in the pyramid
private:
void calcOneLevel( const Mat I0, const Mat I1, Mat W );
Mat warpImage( const Mat input, const Mat flow );
void dataTerm( const Mat W, const Mat dW, const Mat Ix, const Mat Iy, const Mat Iz,
const Mat Ixx, const Mat Ixy, const Mat Iyy, const Mat Ixz, const Mat Iyz,
Mat a11, Mat a12, Mat a22, Mat b1, Mat b2 );
void smoothnessWeights( const Mat W, Mat weightsX, Mat weightsY );
void smoothnessTerm( const Mat W, const Mat weightsX, const Mat weightsY, Mat b1, Mat b2 );
void sorSolve( const Mat a11, const Mat a12, const Mat a22, const Mat b1, const Mat b2,
const Mat smoothX, const Mat smoothY, Mat dW );
void sorUnfolded( const Mat a11, const Mat a12, const Mat a22, const Mat b1, const Mat b2,
const Mat smoothX, const Mat smoothY, Mat dW );
std::vector<Mat> buildPyramid( const Mat& src );
int interpolationType;
};
OpticalFlowDeepFlow::OpticalFlowDeepFlow()
{
// parameters
sigma = 0.6f;
minSize = 25;
downscaleFactor = 0.95f;
fixedPointIterations = 5;
sorIterations = 25;
alpha = 1.0f;
delta = 0.5f;
gamma = 5.0f;
omega = 1.6f;
//consts
interpolationType = INTER_LINEAR;
zeta = 0.1f;
epsilon = 0.001f;
maxLayers = 200;
}
std::vector<Mat> OpticalFlowDeepFlow::buildPyramid( const Mat& src )
{
std::vector<Mat> pyramid;
pyramid.push_back(src);
Mat prev = pyramid[0];
int i = 0;
while ( i < this->maxLayers )
{
Mat next; //TODO: filtering at each level?
Size nextSize((int) (prev.cols * downscaleFactor + 0.5f),
(int) (prev.rows * downscaleFactor + 0.5f));
if( nextSize.height <= minSize || nextSize.width <= minSize)
break;
resize(prev, next,
nextSize, 0, 0,
interpolationType);
pyramid.push_back(next);
prev = next;
}
return pyramid;
}
Mat OpticalFlowDeepFlow::warpImage( const Mat input, const Mat flow )
{
// warps the image "backwards"
// if flow = computeFlow( I0, I1 ), then
// I0 = warpImage( I1, flow ) - approx.
Mat output;
Mat mapX = Mat(flow.size(), CV_32FC1);
Mat mapY = Mat(flow.size(), CV_32FC1);
const float *pFlow;
float *pMapX, *pMapY;
for ( int j = 0; j < flow.rows; ++j )
{
pFlow = flow.ptr<float>(j);
pMapX = mapX.ptr<float>(j);
pMapY = mapY.ptr<float>(j);
for ( int i = 0; i < flow.cols; ++i )
{
pMapX[i] = i + pFlow[2 * i];
pMapY[i] = j + pFlow[2 * i + 1];
}
}
remap(input, output, mapX, mapY, interpolationType, BORDER_TRANSPARENT);
return output;
}
void OpticalFlowDeepFlow::calc( InputArray _I0, InputArray _I1, InputOutputArray _flow )
{
Mat I0temp = _I0.getMat();
Mat I1temp = _I1.getMat();
CV_Assert(I0temp.size() == I1temp.size());
CV_Assert(I0temp.type() == I1temp.type());
CV_Assert(I0temp.channels() == 1);
// TODO: currently only grayscale - data term could be computed in color version as well...
Mat I0, I1;
I0temp.convertTo(I0, CV_32F);
I1temp.convertTo(I1, CV_32F);
_flow.create(I0.size(), CV_32FC2);
Mat W = _flow.getMat(); // if any data present - will be discarded
// pre-smooth images
int kernelLen = ((int)floor(3 * sigma) * 2) + 1;
Size kernelSize(kernelLen, kernelLen);
GaussianBlur(I0, I0, kernelSize, sigma);
GaussianBlur(I1, I1, kernelSize, sigma);
// build down-sized pyramids
std::vector<Mat> pyramid_I0 = buildPyramid(I0);
std::vector<Mat> pyramid_I1 = buildPyramid(I1);
int levelCount = (int) pyramid_I0.size();
// initialize the first version of flow estimate to zeros
Size smallestSize = pyramid_I0[levelCount - 1].size();
W = Mat::zeros(smallestSize, CV_32FC2);
for ( int level = levelCount - 1; level >= 0; --level )
{ //iterate through all levels, beginning with the most coarse
calcOneLevel(pyramid_I0[level], pyramid_I1[level], W);
if ( level > 0 ) //not the last level
{
Mat temp;
Size newSize = pyramid_I0[level - 1].size();
resize(W, temp, newSize, 0, 0, interpolationType); //resize calculated flow
W = temp * (1.0f / downscaleFactor); //scale values
}
}
W.copyTo(_flow);
}
void OpticalFlowDeepFlow::calcOneLevel( const Mat I0, const Mat I1, Mat W )
{
CV_DbgAssert( I0.size() == I1.size() );CV_DbgAssert( I0.type() == I1.type() );CV_DbgAssert( W.size() == I0.size() );
// linear equation systems
Size s = I0.size();
int t = CV_32F; // data type
Mat a11, a12, a22, b1, b2;
a11.create(s, t);
a12.create(s, t);
a22.create(s, t);
b1.create(s, t);
b2.create(s, t);
// diffusivity coeffs
Mat weightsX, weightsY;
weightsX.create(s, t);
weightsY.create(s, t);
Mat warpedI1 = warpImage(I1, W); // warped second image
Mat averageFrame = 0.5 * (I0 + warpedI1); // mean value of 2 frames - to compute derivatives on
//computing derivatives, notation as in Brox's paper
Mat Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz;
int ddepth = -1; //as source image
int kernel_size = 1;
Sobel(averageFrame, Ix, ddepth, 1, 0, kernel_size, 1, 0.00, BORDER_REPLICATE);
Sobel(averageFrame, Iy, ddepth, 0, 1, kernel_size, 1, 0.00, BORDER_REPLICATE);
Iz.create(I1.size(), I1.type());
Iz = warpedI1 - I0;
Sobel(Ix, Ixx, ddepth, 1, 0, kernel_size, 1, 0.00, BORDER_REPLICATE);
Sobel(Ix, Ixy, ddepth, 0, 1, kernel_size, 1, 0.00, BORDER_REPLICATE);
Sobel(Iy, Iyy, ddepth, 0, 1, kernel_size, 1, 0.00, BORDER_REPLICATE);
Sobel(Iz, Ixz, ddepth, 1, 0, kernel_size, 1, 0.00, BORDER_REPLICATE);
Sobel(Iz, Iyz, ddepth, 0, 1, kernel_size, 1, 0.00, BORDER_REPLICATE);
Mat tempW = W.clone(); // flow version to be modified in each iteration
Mat dW = Mat::zeros(W.size(), W.type()); // flow increment
//fixed-point iterations
for ( int i = 0; i < fixedPointIterations; ++i )
{
dataTerm(W, dW, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz, a11, a12, a22, b1, b2);
smoothnessWeights(tempW, weightsX, weightsY);
smoothnessTerm(W, weightsX, weightsY, b1, b2);
sorSolve(a11, a12, a22, b1, b2, weightsX, weightsY, dW);
tempW = W + dW;
}
tempW.copyTo(W);
}
void OpticalFlowDeepFlow::dataTerm( const Mat W, const Mat dW, const Mat Ix, const Mat Iy,
const Mat Iz, const Mat Ixx, const Mat Ixy, const Mat Iyy, const Mat Ixz,
const Mat Iyz, Mat a11, Mat a12, Mat a22, Mat b1, Mat b2 )
{
const float zeta_squared = zeta * zeta; // added in normalization factor to be non-zero
const float epsilon_squared = epsilon * epsilon;
const float *pIx, *pIy, *pIz;
const float *pIxx, *pIxy, *pIyy, *pIxz, *pIyz;
const float *pdU, *pdV; // accessing 2 layers of dW. Succesive columns interleave u and v
float *pa11, *pa12, *pa22, *pb1, *pb2; // linear equation sys. coeffs for each pixel
float derivNorm; //denominator of the spatial-derivative normalizing factor (theta_0)
float derivNorm2;
float Ik1z, Ik1zx, Ik1zy; // approximations of I^(k+1) values by Taylor expansions
float temp;
for ( int j = 0; j < W.rows; j++ ) //for each row
{
pIx = Ix.ptr<float>(j);
pIy = Iy.ptr<float>(j);
pIz = Iz.ptr<float>(j);
pIxx = Ixx.ptr<float>(j);
pIxy = Ixy.ptr<float>(j);
pIyy = Iyy.ptr<float>(j);
pIxz = Ixz.ptr<float>(j);
pIyz = Iyz.ptr<float>(j);
pa11 = a11.ptr<float>(j);
pa12 = a12.ptr<float>(j);
pa22 = a22.ptr<float>(j);
pb1 = b1.ptr<float>(j);
pb2 = b2.ptr<float>(j);
pdU = dW.ptr<float>(j);
pdV = pdU + 1;
for ( int i = 0; i < W.cols; i++ ) //for each pixel in the row
{ // TODO: implement masking of points warped out of the image
//color constancy component
derivNorm = (*pIx) * (*pIx) + (*pIy) * (*pIy) + zeta_squared;
Ik1z = *pIz + (*pIx * *pdU) + (*pIy * *pdV);
temp = (0.5f*delta/3) / sqrt(Ik1z * Ik1z / derivNorm + epsilon_squared);
*pa11 = *pIx * *pIx * temp / derivNorm;
*pa12 = *pIx * *pIy * temp / derivNorm;
*pa22 = *pIy * *pIy * temp / derivNorm;
*pb1 = -*pIz * *pIx * temp / derivNorm;
*pb2 = -*pIz * *pIy * temp / derivNorm;
// gradient constancy component
derivNorm = *pIxx * *pIxx + *pIxy * *pIxy + zeta_squared;
derivNorm2 = *pIyy * *pIyy + *pIxy * *pIxy + zeta_squared;
Ik1zx = *pIxz + *pIxx * *pdU + *pIxy * *pdV;
Ik1zy = *pIyz + *pIxy * *pdU + *pIyy * *pdV;
temp = (0.5f*gamma/3)
/ sqrt(
Ik1zx * Ik1zx / derivNorm + Ik1zy * Ik1zy / derivNorm2
+ epsilon_squared);
*pa11 += temp * (*pIxx * *pIxx / derivNorm + *pIxy * *pIxy / derivNorm2);
*pa12 += temp * (*pIxx * *pIxy / derivNorm + *pIxy * *pIyy / derivNorm2);
*pa22 += temp * (*pIxy * *pIxy / derivNorm + *pIyy * *pIyy / derivNorm2);
*pb1 += -temp * (*pIxx * *pIxz / derivNorm + *pIxy * *pIyz / derivNorm2);
*pb2 += -temp * (*pIxy * *pIxz / derivNorm + *pIyy * *pIyz / derivNorm2);
++pIx;
++pIy;
++pIz;
++pIxx;
++pIxy;
++pIyy;
++pIxz;
++pIyz;
pdU += 2;
pdV += 2;
++pa11;
++pa12;
++pa22;
++pb1;
++pb2;
}
}
}
void OpticalFlowDeepFlow::smoothnessWeights( const Mat W, Mat weightsX, Mat weightsY )
{
float k[] = { -0.5, 0, 0.5 };
const float epsilon_squared = epsilon * epsilon;
Mat kernel_h = Mat(1, 3, CV_32FC1, k);
Mat kernel_v = Mat(3, 1, CV_32FC1, k);
Mat Wx, Wy; // partial derivatives of the flow
Mat S = Mat(W.size(), CV_32FC1); // sum of squared derivatives
weightsX = Mat::zeros(W.size(), CV_32FC1); //output - weights of smoothness terms in x and y directions
weightsY = Mat::zeros(W.size(), CV_32FC1);
filter2D(W, Wx, CV_32FC2, kernel_h);
filter2D(W, Wy, CV_32FC2, kernel_v);
const float * ux, *uy, *vx, *vy;
float * pS, *pWeight, *temp;
for ( int j = 0; j < S.rows; ++j )
{
ux = Wx.ptr<float>(j);
vx = ux + 1;
uy = Wy.ptr<float>(j);
vy = uy + 1;
pS = S.ptr<float>(j);
for ( int i = 0; i < S.cols; ++i )
{
*pS = alpha / sqrt(*ux * *ux + *vx * *vx + *uy * *uy + *vy * *vy + epsilon_squared);
ux += 2;
vx += 2;
uy += 2;
vy += 2;
++pS;
}
}
// horizontal weights
for ( int j = 0; j < S.rows; ++j )
{
pWeight = weightsX.ptr<float>(j);
pS = S.ptr<float>(j);
for ( int i = 0; i < S.cols - 1; ++i )
{
*pWeight = *pS + *(pS + 1);
++pS;
++pWeight;
}
}
//vertical weights
for ( int j = 0; j < S.rows - 1; ++j )
{
pWeight = weightsY.ptr<float>(j);
pS = S.ptr<float>(j);
temp = S.ptr<float>(j + 1); // next row pointer for easy access
for ( int i = 0; i < S.cols; ++i )
{
*pWeight = *(pS++) + *(temp++);
++pWeight;
}
}
}
void OpticalFlowDeepFlow::smoothnessTerm( const Mat W, const Mat weightsX, const Mat weightsY,
Mat b1, Mat b2 )
{
float *pB1, *pB2;
const float *pU, *pV, *pWeight;
float iB1, iB2; // increments of b1 and b2
//horizontal direction - both U and V (b1 and b2)
for ( int j = 0; j < W.rows; j++ )
{
pB1 = b1.ptr<float>(j);
pB2 = b2.ptr<float>(j);
pU = W.ptr<float>(j);
pV = pU + 1;
pWeight = weightsX.ptr<float>(j);
for ( int i = 0; i < W.cols - 1; i++ )
{
iB1 = (*(pU + 2) - *pU) * *pWeight;
iB2 = (*(pV + 2) - *pV) * *pWeight;
*pB1 += iB1;
*(pB1 + 1) -= iB1;
*pB2 += iB2;
*(pB2 + 1) -= iB2;
pB1++;
pB2++;
pU += 2;
pV += 2;
pWeight++;
}
}
const float *pUnext, *pVnext; // temp pointers for next row
float *pB1next, *pB2next;
//vertical direction - both U and V
for ( int j = 0; j < W.rows - 1; j++ )
{
pB1 = b1.ptr<float>(j);
pB2 = b2.ptr<float>(j);
pU = W.ptr<float>(j);
pV = pU + 1;
pUnext = W.ptr<float>(j + 1);
pVnext = pUnext + 1;
pB1next = b1.ptr<float>(j + 1);
pB2next = b2.ptr<float>(j + 1);
pWeight = weightsY.ptr<float>(j);
for ( int i = 0; i < W.cols; i++ )
{
iB1 = (*pUnext - *pU) * *pWeight;
iB2 = (*pVnext - *pV) * *pWeight;
*pB1 += iB1;
*pB1next -= iB1;
*pB2 += iB2;
*pB2next -= iB2;
pB1++;
pB2++;
pU += 2;
pV += 2;
pWeight++;
pUnext += 2;
pVnext += 2;
pB1next++;
pB2next++;
}
}
}
void OpticalFlowDeepFlow::sorSolve( const Mat a11, const Mat a12, const Mat a22, const Mat b1,
const Mat b2, const Mat smoothX, const Mat smoothY, Mat dW )
{
CV_Assert(a11.isContinuous());
CV_Assert(a12.isContinuous());
CV_Assert(a22.isContinuous());
CV_Assert(b1.isContinuous());
CV_Assert(b2.isContinuous());
CV_Assert(smoothX.isContinuous());
CV_Assert(smoothY.isContinuous());
if(dW.cols > 2 && dW.rows > 2)
{
sorUnfolded(a11, a12, a22, b1, b2, smoothX, smoothY, dW );
//more efficient version - this one is mostly for future reference and readability
return;
}
std::vector<Mat> dWChannels(2);
split(dW, dWChannels);
Mat *du = &(dWChannels[0]);
Mat *dv = &(dWChannels[1]);
CV_Assert(du->isContinuous());
CV_Assert(dv->isContinuous());
const float *pa11, *pa12, *pa22, *pb1, *pb2, *psmoothX, *psmoothY;
float *pdu, *pdv;
psmoothX = smoothX.ptr<float>(0);
psmoothY = smoothY.ptr<float>(0);
pdu = du->ptr<float>(0);
pdv = dv->ptr<float>(0);
float sigmaU, sigmaV, dPsi, A11, A22, A12, B1, B2, det;
int cols = dW.cols;
int rows = dW.rows;
int s = dW.cols; // step between rows
for ( int iter = 0; iter < sorIterations; ++iter )
{
pa11 = a11.ptr<float>(0);
pa12 = a12.ptr<float>(0);
pa22 = a22.ptr<float>(0);
pb1 = b1.ptr<float>(0);
pb2 = b2.ptr<float>(0);
for ( int j = 0; j < rows; ++j )
{
for ( int i = 0; i < cols; ++i )
{
int o = j * s + i;
if ( i == 0 && j == 0 )
{
dPsi = psmoothX[o] + psmoothY[o];
sigmaU = psmoothX[o] * pdu[o + 1] + psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o] * pdv[o + 1] + psmoothY[o] * pdv[o + s];
} else if ( i == cols - 1 && j == 0 )
{
dPsi = psmoothX[o - 1] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o] * pdv[o + s];
} else if ( j == 0 )
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1] + psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1] + psmoothY[o] * pdv[o + s];
} else if ( i == 0 && j == rows - 1 )
{
dPsi = psmoothX[o] + psmoothY[o - s];
sigmaU = psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s];
} else if ( i == cols - 1 && j == rows - 1 )
{
dPsi = psmoothX[o - 1] + psmoothY[o - s];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o - s] * pdv[o - s];
} else if ( j == rows - 1 )
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o - s];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s];
} else if ( i == 0 )
{
dPsi = psmoothX[o] + psmoothY[o - s] + psmoothY[o];
sigmaU = psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
} else if ( i == cols - 1 )
{
dPsi = psmoothX[o - 1] + psmoothY[o - s] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
} else
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o - s]
+ psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
}
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
}
}
}
merge(dWChannels, dW);
}
void OpticalFlowDeepFlow::sorUnfolded( const Mat a11, const Mat a12, const Mat a22, const Mat b1, const Mat b2,
const Mat smoothX, const Mat smoothY, Mat dW )
{
// the same effect as sorSolve(), but written more efficiently
std::vector<Mat> dWChannels(2);
split(dW, dWChannels);
Mat *du = &(dWChannels[0]);
Mat *dv = &(dWChannels[1]);
CV_Assert(du->isContinuous());
CV_Assert(dv->isContinuous());
const float *pa11, *pa12, *pa22, *pb1, *pb2, *psmoothX, *psmoothY;
float *pdu, *pdv;
float sigmaU, sigmaV, dPsi, A11, A22, A12, B1, B2, det;
int cols = dW.cols;
int rows = dW.rows;
int s = dW.cols; // step between rows
int j, i, o; //row, column, offset
for ( int iter = 0; iter < sorIterations; ++iter )
{
pa11 = a11.ptr<float>(0);
pa12 = a12.ptr<float>(0);
pa22 = a22.ptr<float>(0);
pb1 = b1.ptr<float>(0);
pb2 = b2.ptr<float>(0);
psmoothX = smoothX.ptr<float>(0);
psmoothY = smoothY.ptr<float>(0);
pdu = du->ptr<float>(0);
pdv = dv->ptr<float>(0);
// first row
// first column
o=0;
dPsi = psmoothX[o] + psmoothY[o];
sigmaU = psmoothX[o] * pdu[o + 1] + psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o] * pdv[o + 1] + psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
// middle rows
for ( o = 1; o < cols-1; ++o )
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1] + psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1] + psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
}
// last column
dPsi = psmoothX[o - 1] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
//middle rows
for ( j = 1; j < rows - 1; ++j)
{
// first column
dPsi = psmoothX[o] + psmoothY[o - s] + psmoothY[o];
sigmaU = psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
// middle columns
for ( i = 1; i < cols - 1; ++i)
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o - s]
+ psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
}
//last column
dPsi = psmoothX[o - 1] + psmoothY[o - s] + psmoothY[o];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o - s] * pdu[o - s]
+ psmoothY[o] * pdu[o + s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o - s] * pdv[o - s]
+ psmoothY[o] * pdv[o + s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
}
//last row
//first column
dPsi = psmoothX[o] + psmoothY[o - s];
sigmaU = psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
//middle columns
for ( i = 1; i < cols - 1; ++i)
{
dPsi = psmoothX[o - 1] + psmoothX[o] + psmoothY[o - s];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothX[o] * pdu[o + 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothX[o] * pdv[o + 1]
+ psmoothY[o - s] * pdv[o - s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
++o;
}
//last column
dPsi = psmoothX[o - 1] + psmoothY[o - s];
sigmaU = psmoothX[o - 1] * pdu[o - 1]
+ psmoothY[o - s] * pdu[o - s];
sigmaV = psmoothX[o - 1] * pdv[o - 1]
+ psmoothY[o - s] * pdv[o - s];
A11 = *pa22 + dPsi;
A12 = -*pa12;
A22 = *pa11 + dPsi;
det = A11 * A22 - A12 * A12;
A11 /= det;
A12 /= det;
A22 /= det;
B1 = *pb1 + sigmaU;
B2 = *pb2 + sigmaV;
pdu[o] += omega * (A11 * B1 + A12 * B2 - pdu[o]);
pdv[o] += omega * (A12 * B1 + A22 * B2 - pdv[o]);
++pa11; ++pa12; ++pa22; ++pb1; ++pb2;
}
merge(dWChannels, dW);
}
void OpticalFlowDeepFlow::collectGarbage()
{
}
//
//CV_INIT_ALGORITHM(OpticalFlowDeepFlow, "DenseOpticalFlow.DeepFlow",
// obj.info()->addParam(obj, "sigma", obj.sigma, false, 0, 0, "Gaussian blur parameter");
// obj.info()->addParam(obj, "alpha", obj.alpha, false, 0, 0, "Smoothness assumption weight");
// obj.info()->addParam(obj, "delta", obj.delta, false, 0, 0, "Color constancy weight");
// obj.info()->addParam(obj, "gamma", obj.gamma, false, 0, 0, "Gradient constancy weight");
// obj.info()->addParam(obj, "omega", obj.omega, false, 0, 0, "Relaxation factor in SOR");
// obj.info()->addParam(obj, "minSize", obj.minSize, false, 0, 0, "Min. image size in the pyramid");
// obj.info()->addParam(obj, "fixedPointIterations", obj.fixedPointIterations, false, 0, 0, "Fixed point iterations");
// obj.info()->addParam(obj, "sorIterations", obj.sorIterations, false, 0, 0, "SOR iterations");
// obj.info()->addParam(obj, "downscaleFactor", obj.downscaleFactor, false, 0, 0,"Downscale factor"))
Ptr<DenseOpticalFlow> createOptFlow_DeepFlow()
{
return makePtr<OpticalFlowDeepFlow>();
}
}//optflow
}//cv
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/video.hpp"
#include "opencv2/optflow.hpp"
namespace cv
{
namespace optflow
{
class OpticalFlowSimpleFlow : public DenseOpticalFlow
{
public:
OpticalFlowSimpleFlow();
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
void collectGarbage();
// AlgorithmInfo* info() const;
protected:
int layers;
int averaging_radius;
int max_flow;
double sigma_dist;
double sigma_color;
int postprocess_window;
double sigma_dist_fix;
double sigma_color_fix;
double occ_thr;
int upscale_averaging_radius;
double upscale_sigma_dist;
double upscale_sigma_color;
double speed_up_thr;
};
OpticalFlowSimpleFlow::OpticalFlowSimpleFlow()
{
// values from the example app
layers = 3;
averaging_radius = 2;
max_flow = 4;
// values from the default function parameters
sigma_dist = 4.1;
sigma_color = 25.5;
postprocess_window = 18;
sigma_dist_fix = 55.0;
sigma_color_fix = 25.5;
occ_thr = 0.35;
upscale_averaging_radius = 18;
upscale_sigma_dist = 55.0;
upscale_sigma_color = 25.5;
speed_up_thr = 10;
}
void OpticalFlowSimpleFlow::calc(InputArray I0, InputArray I1, InputOutputArray flow)
{
optflow::calcOpticalFlowSF(I0, I1, flow, layers, averaging_radius, max_flow, sigma_dist, sigma_color,
postprocess_window, sigma_dist_fix, sigma_color_fix, occ_thr,
upscale_averaging_radius, upscale_sigma_dist, upscale_sigma_color, speed_up_thr);
}
void OpticalFlowSimpleFlow::collectGarbage()
{
}
//CV_INIT_ALGORITHM(OpticalFlowSimpleFlow, "DenseOpticalFlow.SimpleFlow"),
// obj.info()->addParam(obj, "layers", obj.layers);
// obj.info()->addParam(obj, "averaging_radius", obj.averaging_radius);
// obj.info()->addParam(obj, "max_flow", obj.max_flow);
// obj.info()->addParam(obj, "sigma_dist", obj.sigma_dist);
// obj.info()->addParam(obj, "sigma_color", obj.sigma_color);
// obj.info()->addParam(obj, "postprocess_window", obj.postprocess_window);
// obj.info()->addParam(obj, "sigma_dist_fix", obj.sigma_dist_fix);
// obj.info()->addParam(obj, "sigma_color_fix", obj.sigma_color_fix);
// obj.info()->addParam(obj, "occ_thr", obj.occ_thr);
// obj.info()->addParam(obj, "upscale_averaging_radius", obj.upscale_averaging_radius);
// obj.info()->addParam(obj, "upscale_sigma_dist", obj.upscale_sigma_dist);
// obj.info()->addParam(obj, "upscale_sigma_color", obj.upscale_sigma_color);
// obj.info()->addParam(obj, "speed_up_thr", obj.speed_up_thr))
Ptr<DenseOpticalFlow> createOptFlow_SimpleFlow()
{
return makePtr<OpticalFlowSimpleFlow>();
}
class OpticalFlowFarneback : public DenseOpticalFlow
{
public:
OpticalFlowFarneback();
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
void collectGarbage();
// AlgorithmInfo* info() const;
protected:
int numLevels;
double pyrScale;
bool fastPyramids;
int winSize;
int numIters;
int polyN;
double polySigma;
int flags;
};
OpticalFlowFarneback::OpticalFlowFarneback()
{
// values copied from the FarnebackOpticalFlow class
numLevels = 5;
pyrScale = 0.5;
fastPyramids = false;
winSize = 13;
numIters = 10;
polyN = 5;
polySigma = 1.1;
flags = 0;
}
void OpticalFlowFarneback::calc(InputArray I0, InputArray I1, InputOutputArray flow)
{
calcOpticalFlowFarneback(I0, I1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
}
void OpticalFlowFarneback::collectGarbage()
{
}
//CV_INIT_ALGORITHM(OpticalFlowFarneback, "DenseOpticalFlow.Farneback",
// obj.info()->addParam(obj, "numLevels", obj.numLevels);
// obj.info()->addParam(obj, "pyrScale", obj.pyrScale);
// obj.info()->addParam(obj, "fastPyramids", obj.fastPyramids);
// obj.info()->addParam(obj, "winSize", obj.winSize);
// obj.info()->addParam(obj, "numIters", obj.numIters);
// obj.info()->addParam(obj, "polyN", obj.polyN);
// obj.info()->addParam(obj, "polySigma", obj.polySigma);
// obj.info()->addParam(obj, "flags", obj.flags))
Ptr<DenseOpticalFlow> createOptFlow_Farneback()
{
return makePtr<OpticalFlowFarneback>();
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include<iostream>
#include<fstream>
namespace cv {
namespace optflow {
const float FLOW_TAG_FLOAT = 202021.25f;
const char *FLOW_TAG_STRING = "PIEH";
CV_EXPORTS_W Mat readOpticalFlow( const String& path )
{
// CV_Assert(sizeof(float) == 4);
//FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()
Mat_<Point2f> flow;
std::ifstream file(path.c_str(), std::ios_base::binary);
if ( !file.good() )
return flow; // no file - return empty matrix
float tag;
file.read((char*) &tag, sizeof(float));
if ( tag != FLOW_TAG_FLOAT )
return flow;
int width, height;
file.read((char*) &width, 4);
file.read((char*) &height, 4);
flow.create(height, width);
for ( int i = 0; i < flow.rows; ++i )
{
for ( int j = 0; j < flow.cols; ++j )
{
Point2f u;
file.read((char*) &u.x, sizeof(float));
file.read((char*) &u.y, sizeof(float));
if ( !file.good() )
{
flow.release();
return flow;
}
flow(i, j) = u;
}
}
file.close();
return flow;
}
CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow )
{
// CV_Assert(sizeof(float) == 4);
const int nChannels = 2;
Mat input = flow.getMat();
if ( input.channels() != nChannels || input.depth() != CV_32F || path.length() == 0 )
return false;
std::ofstream file(path.c_str(), std::ofstream::binary);
if ( !file.good() )
return false;
int nRows, nCols;
nRows = (int) input.size().height;
nCols = (int) input.size().width;
const int headerSize = 12;
char header[headerSize];
memcpy(header, FLOW_TAG_STRING, 4);
// size of ints is known - has been asserted in the current function
memcpy(header + 4, reinterpret_cast<const char*>(&nCols), sizeof(nCols));
memcpy(header + 8, reinterpret_cast<const char*>(&nRows), sizeof(nRows));
file.write(header, headerSize);
if ( !file.good() )
return false;
// if ( input.isContinuous() ) //matrix is continous - treat it as a single row
// {
// nCols *= nRows;
// nRows = 1;
// }
int row;
char* p;
for ( row = 0; row < nRows; row++ )
{
p = input.ptr<char>(row);
file.write(p, nCols * nChannels * sizeof(float));
if ( !file.good() )
return false;
}
file.close();
return true;
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment