Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
0ecbe87c
Commit
0ecbe87c
authored
May 31, 2014
by
Vlad Shakhuro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add waldboost interface, stump implementation
parent
4fae9410
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
310 additions
and
0 deletions
+310
-0
waldboost.cpp
apps/icf/waldboost.cpp
+166
-0
waldboost.hpp
apps/icf/waldboost.hpp
+144
-0
No files found.
apps/icf/waldboost.cpp
0 → 100644
View file @
0ecbe87c
#include "waldboost.hpp"
using
cv
::
Mat
;
using
cv
::
Mat_
;
using
cv
::
sort
;
using
cv
::
sortIdx
;
using
cv
::
adas
::
Stump
;
using
cv
::
adas
::
WaldBoost
;
/* Cumulative sum by rows */
static
void
cumsum
(
const
Mat_
<
float
>&
src
,
Mat_
<
float
>
dst
)
{
CV_Assert
(
src
.
cols
>
0
);
for
(
int
row
=
0
;
row
<
src
.
rows
;
++
row
)
{
dst
(
row
,
0
)
=
src
(
row
,
0
);
for
(
int
col
=
1
;
col
<
src
.
cols
;
++
col
)
{
dst
(
row
,
col
)
=
dst
(
row
,
col
-
1
)
+
src
(
row
,
col
);
}
}
}
#include <iostream>
using
std
::
cout
;
using
std
::
endl
;
int
Stump
::
train
(
const
Mat
&
data
,
const
Mat
&
labels
,
const
Mat
&
weights
)
{
CV_Assert
(
labels
.
rows
==
1
&&
labels
.
cols
==
data
.
cols
);
CV_Assert
(
weights
.
rows
==
1
&&
weights
.
cols
==
data
.
cols
);
/* Assert that data and labels have int type */
/* Assert that weights have float type */
/* Prepare labels for each feature rearranged according to sorted order */
Mat
sorted_labels
(
data
.
rows
,
data
.
cols
,
labels
.
type
());
Mat
sorted_weights
(
data
.
rows
,
data
.
cols
,
weights
.
type
());
Mat
indices
;
sortIdx
(
data
,
indices
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
for
(
int
row
=
0
;
row
<
indices
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
indices
.
cols
;
++
col
)
{
sorted_labels
.
at
<
int
>
(
row
,
col
)
=
labels
.
at
<
int
>
(
0
,
indices
.
at
<
int
>
(
row
,
col
));
sorted_weights
.
at
<
float
>
(
row
,
col
)
=
weights
.
at
<
float
>
(
0
,
indices
.
at
<
float
>
(
row
,
col
));
}
}
/* Sort feature values */
Mat
sorted_data
(
data
.
rows
,
data
.
cols
,
data
.
type
());
sort
(
data
,
sorted_data
,
cv
::
SORT_EVERY_ROW
|
cv
::
SORT_ASCENDING
);
/* Split positive and negative weights */
Mat
pos_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
for
(
int
row
=
0
;
row
<
data
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
data
.
cols
;
++
col
)
{
if
(
sorted_labels
.
at
<
int
>
(
row
,
col
)
==
+
1
)
{
pos_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
else
{
neg_weights
.
at
<
float
>
(
row
,
col
)
=
sorted_weights
.
at
<
float
>
(
row
,
col
);
}
}
}
/* Compute cumulative sums for fast stump error computation */
Mat
pos_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
Mat
neg_cum_weights
=
Mat
::
zeros
(
sorted_weights
.
rows
,
sorted_weights
.
cols
,
sorted_weights
.
type
());
cumsum
(
pos_weights
,
pos_cum_weights
);
cumsum
(
neg_weights
,
neg_cum_weights
);
/* Compute total weights of positive and negative samples */
int
pos_total_weight
=
0
,
neg_total_weight
=
0
;
for
(
int
col
=
0
;
col
<
labels
.
cols
;
++
col
)
{
if
(
labels
.
at
<
int
>
(
0
,
col
)
==
+
1
)
pos_total_weight
+=
weights
.
at
<
float
>
(
0
,
col
);
else
neg_total_weight
+=
weights
.
at
<
float
>
(
0
,
col
);
}
cout
<<
pos_total_weight
<<
endl
;
cout
<<
neg_total_weight
<<
endl
;
cout
<<
pos_weights
<<
endl
;
cout
<<
neg_weights
<<
endl
;
cout
<<
pos_cum_weights
<<
endl
;
cout
<<
neg_cum_weights
<<
endl
;
/* Compute minimal error */
float
min_err
=
FLT_MAX
;
int
min_row
=
-
1
;
int
min_col
=
-
1
;
int
min_polarity
=
0
;
for
(
int
row
=
0
;
row
<
sorted_weights
.
rows
;
++
row
)
{
for
(
int
col
=
0
;
col
<
sorted_weights
.
cols
-
1
;
++
col
)
{
float
err
;
err
=
pos_cum_weights
.
at
<
float
>
(
row
,
col
)
+
(
neg_total_weight
-
neg_cum_weights
.
at
<
float
>
(
row
,
col
));
cout
<<
"row "
<<
row
<<
"err "
<<
err
<<
endl
;
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_col
=
col
;
min_polarity
=
+
1
;
}
err
=
(
pos_total_weight
-
pos_cum_weights
.
at
<
float
>
(
row
,
col
))
+
neg_cum_weights
.
at
<
float
>
(
row
,
col
);
cout
<<
"row "
<<
row
<<
"err "
<<
err
<<
endl
;
if
(
err
<
min_err
)
{
min_err
=
err
;
min_row
=
row
;
min_col
=
col
;
min_polarity
=
-
1
;
}
}
}
cout
<<
"min_err: "
<<
min_err
<<
endl
;
/* Compute threshold, store found values in fields */
threshold_
=
(
sorted_data
.
at
<
int
>
(
min_row
,
min_col
)
+
sorted_data
.
at
<
int
>
(
min_row
,
min_col
+
1
)
)
/
2
;
cout
<<
"threshold: "
<<
threshold_
<<
endl
;
polarity_
=
min_polarity
;
return
min_row
;
}
static
inline
int
sign
(
int
value
)
{
if
(
value
>
0
)
return
+
1
;
return
-
1
;
}
int
Stump
::
predict
(
int
value
)
{
return
polarity_
*
sign
(
value
-
threshold_
);
}
apps/icf/waldboost.hpp
0 → 100644
View file @
0ecbe87c
/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
*/
#ifndef __OPENCV_ADAS_WALDBOOST_HPP__
#define __OPENCV_ADAS_WALDBOOST_HPP__
#include <opencv2/core.hpp>
#include "acffeature.hpp"
namespace
cv
{
namespace
adas
{
class
Stump
{
public
:
/* Initialize zero stump */
Stump
()
:
threshold_
(
0
),
polarity_
(
1
)
{};
/* Initialize stump with given threshold and polarity */
Stump
(
int
threshold
,
int
polarity
)
:
threshold_
(
threshold
),
polarity_
(
polarity
)
{};
/* Train stump for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
weights — matrix of sample weights, size 1 x N
Returns chosen feature index. Feature enumeration starts from 0
*/
int
train
(
const
Mat
&
data
,
const
Mat
&
labels
,
const
Mat
&
weights
);
/* Predict object class given
value — feature value. Feature must be the same as chose during training
stump
Returns object class from {-1, +1}
*/
int
predict
(
int
value
);
private
:
/* Stump decision threshold */
int
threshold_
;
/* Stump polarity, can be from {-1, +1} */
int
polarity_
;
/* Stump decision rule:
h(value) = polarity * sign(value - threshold)
*/
};
struct
WaldBoostParams
{
int
weak_count
;
};
class
WaldBoost
{
public
:
/* Initialize WaldBoost cascade with default of specified parameters */
WaldBoost
(
const
WaldBoostParams
&
params
);
/* Train WaldBoost cascade for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
Returns feature indices chosen for cascade.
Feature enumeration starts from 0
*/
std
::
vector
<
int
>
train
(
const
Mat
&
data
,
const
Mat
&
labels
);
/* Predict object class given object that can compute object features
feature_evaluator — object that can compute features by demand
Returns confidence_value — measure of confidense that object
is from class +1
*/
float
predict
(
const
Ptr
<
ACFFeatureEvaluator
>&
feature_evaluator
);
private
:
/* Parameters for cascade training */
WaldBoostParams
params_
;
/* Stumps in cascade */
std
::
vector
<
Stump
>
stumps_
;
/* Weight for stumps in cascade linear combination */
std
::
vector
<
float
>
stump_weights_
;
/* Rejection thresholds for linear combination at every stump evaluation */
std
::
vector
<
float
>
thresholds_
;
};
}
/* namespace adas */
}
/* namespace cv */
#endif
/* __OPENCV_ADAS_WALDBOOST_HPP__ */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment