Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
0c691ff0
Commit
0c691ff0
authored
Oct 07, 2015
by
Zhou Chao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
replace tabs with spaces
parent
e5f3571b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
248 additions
and
248 deletions
+248
-248
l0_smooth.cpp
modules/ximgproc/src/l0_smooth.cpp
+248
-248
No files found.
modules/ximgproc/src/l0_smooth.cpp
View file @
0c691ff0
...
@@ -44,133 +44,133 @@ using namespace std;
...
@@ -44,133 +44,133 @@ using namespace std;
namespace
namespace
{
{
void
shift
(
InputArray
src
,
OutputArray
dst
,
int
shift_x
,
int
shift_y
)
{
void
shift
(
InputArray
src
,
OutputArray
dst
,
int
shift_x
,
int
shift_y
)
{
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
Mat
D
=
dst
.
getMat
();
Mat
D
=
dst
.
getMat
();
if
(
S
.
data
==
D
.
data
){
if
(
S
.
data
==
D
.
data
){
S
=
S
.
clone
();
S
=
S
.
clone
();
}
}
D
.
create
(
S
.
size
(),
S
.
type
());
D
.
create
(
S
.
size
(),
S
.
type
());
Mat
s0
(
S
,
Rect
(
0
,
0
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
s0
(
S
,
Rect
(
0
,
0
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
s1
(
S
,
Rect
(
S
.
cols
-
shift_x
,
0
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
s1
(
S
,
Rect
(
S
.
cols
-
shift_x
,
0
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
s2
(
S
,
Rect
(
0
,
S
.
rows
-
shift_y
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
s2
(
S
,
Rect
(
0
,
S
.
rows
-
shift_y
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
s3
(
S
,
Rect
(
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
,
shift_x
,
shift_y
));
Mat
s3
(
S
,
Rect
(
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
,
shift_x
,
shift_y
));
Mat
d0
(
D
,
Rect
(
shift_x
,
shift_y
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
d0
(
D
,
Rect
(
shift_x
,
shift_y
,
S
.
cols
-
shift_x
,
S
.
rows
-
shift_y
));
Mat
d1
(
D
,
Rect
(
0
,
shift_y
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
d1
(
D
,
Rect
(
0
,
shift_y
,
shift_x
,
S
.
rows
-
shift_y
));
Mat
d2
(
D
,
Rect
(
shift_x
,
0
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
d2
(
D
,
Rect
(
shift_x
,
0
,
S
.
cols
-
shift_x
,
shift_y
));
Mat
d3
(
D
,
Rect
(
0
,
0
,
shift_x
,
shift_y
));
Mat
d3
(
D
,
Rect
(
0
,
0
,
shift_x
,
shift_y
));
s0
.
copyTo
(
d0
);
s0
.
copyTo
(
d0
);
s1
.
copyTo
(
d1
);
s1
.
copyTo
(
d1
);
s2
.
copyTo
(
d2
);
s2
.
copyTo
(
d2
);
s3
.
copyTo
(
d3
);
s3
.
copyTo
(
d3
);
}
}
// dft after padding imaginary
// dft after padding imaginary
void
fft
(
InputArray
src
,
OutputArray
dst
)
{
void
fft
(
InputArray
src
,
OutputArray
dst
)
{
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
Mat
planes
[]
=
{
S
,
Mat
::
zeros
(
S
.
size
(),
S
.
type
())};
Mat
planes
[]
=
{
S
,
Mat
::
zeros
(
S
.
size
(),
S
.
type
())};
merge
(
planes
,
2
,
dst
);
merge
(
planes
,
2
,
dst
);
// compute the result
// compute the result
dft
(
dst
,
dst
);
dft
(
dst
,
dst
);
}
}
void
psf2otf
(
InputArray
src
,
OutputArray
dst
,
int
height
,
int
width
){
void
psf2otf
(
InputArray
src
,
OutputArray
dst
,
int
height
,
int
width
){
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
Mat
D
=
dst
.
getMat
();
Mat
D
=
dst
.
getMat
();
Mat
padded
;
Mat
padded
;
if
(
S
.
data
==
D
.
data
){
if
(
S
.
data
==
D
.
data
){
S
=
S
.
clone
();
S
=
S
.
clone
();
}
}
// add padding
// add padding
copyMakeBorder
(
S
,
padded
,
0
,
height
-
S
.
rows
,
0
,
width
-
S
.
cols
,
copyMakeBorder
(
S
,
padded
,
0
,
height
-
S
.
rows
,
0
,
width
-
S
.
cols
,
BORDER_CONSTANT
,
Scalar
::
all
(
0
));
BORDER_CONSTANT
,
Scalar
::
all
(
0
));
shift
(
padded
,
padded
,
width
-
S
.
cols
/
2
,
height
-
S
.
rows
/
2
);
shift
(
padded
,
padded
,
width
-
S
.
cols
/
2
,
height
-
S
.
rows
/
2
);
// convert to frequency domain
// convert to frequency domain
fft
(
padded
,
dst
);
fft
(
padded
,
dst
);
}
}
void
dftMultiChannel
(
InputArray
src
,
vector
<
Mat
>
&
dst
){
void
dftMultiChannel
(
InputArray
src
,
vector
<
Mat
>
&
dst
){
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
split
(
S
,
dst
);
split
(
S
,
dst
);
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
fft
(
dst
[
i
],
dst
[
i
]);
fft
(
dst
[
i
],
dst
[
i
]);
}
}
}
}
void
idftMultiChannel
(
const
vector
<
Mat
>
&
src
,
OutputArray
dst
){
void
idftMultiChannel
(
const
vector
<
Mat
>
&
src
,
OutputArray
dst
){
Mat
*
channels
=
new
Mat
[
src
.
size
()];
Mat
*
channels
=
new
Mat
[
src
.
size
()];
for
(
int
i
=
0
;
unsigned
(
i
)
<
src
.
size
();
i
++
){
for
(
int
i
=
0
;
unsigned
(
i
)
<
src
.
size
();
i
++
){
idft
(
src
[
i
],
channels
[
i
]);
idft
(
src
[
i
],
channels
[
i
]);
Mat
realImg
[
2
];
Mat
realImg
[
2
];
split
(
channels
[
i
],
realImg
);
split
(
channels
[
i
],
realImg
);
channels
[
i
]
=
realImg
[
0
]
/
src
[
i
].
cols
/
src
[
i
].
rows
;
channels
[
i
]
=
realImg
[
0
]
/
src
[
i
].
cols
/
src
[
i
].
rows
;
}
}
Mat
D
;
Mat
D
;
merge
(
channels
,
src
.
size
(),
D
);
merge
(
channels
,
src
.
size
(),
D
);
D
.
copyTo
(
dst
);
D
.
copyTo
(
dst
);
delete
[]
channels
;
delete
[]
channels
;
}
}
void
addComplex
(
InputArray
aSrc
,
int
bSrc
,
OutputArray
dst
){
void
addComplex
(
InputArray
aSrc
,
int
bSrc
,
OutputArray
dst
){
Mat
panels
[
2
];
Mat
panels
[
2
];
split
(
aSrc
.
getMat
(),
panels
);
split
(
aSrc
.
getMat
(),
panels
);
panels
[
0
]
=
panels
[
0
]
+
bSrc
;
panels
[
0
]
=
panels
[
0
]
+
bSrc
;
merge
(
panels
,
2
,
dst
);
merge
(
panels
,
2
,
dst
);
}
}
void
divComplexByReal
(
InputArray
aSrc
,
InputArray
bSrc
,
OutputArray
dst
){
void
divComplexByReal
(
InputArray
aSrc
,
InputArray
bSrc
,
OutputArray
dst
){
Mat
aPanels
[
2
];
Mat
aPanels
[
2
];
Mat
bPanels
[
2
];
Mat
bPanels
[
2
];
split
(
aSrc
.
getMat
(),
aPanels
);
split
(
aSrc
.
getMat
(),
aPanels
);
split
(
bSrc
.
getMat
(),
bPanels
);
split
(
bSrc
.
getMat
(),
bPanels
);
Mat
realPart
;
Mat
realPart
;
Mat
imaginaryPart
;
Mat
imaginaryPart
;
divide
(
aPanels
[
0
],
bSrc
.
getMat
(),
realPart
);
divide
(
aPanels
[
0
],
bSrc
.
getMat
(),
realPart
);
divide
(
aPanels
[
1
],
bSrc
.
getMat
(),
imaginaryPart
);
divide
(
aPanels
[
1
],
bSrc
.
getMat
(),
imaginaryPart
);
aPanels
[
0
]
=
realPart
;
aPanels
[
0
]
=
realPart
;
aPanels
[
1
]
=
imaginaryPart
;
aPanels
[
1
]
=
imaginaryPart
;
Mat
rst
;
Mat
rst
;
merge
(
aPanels
,
2
,
dst
);
merge
(
aPanels
,
2
,
dst
);
}
}
void
divComplexByRealMultiChannel
(
const
vector
<
Mat
>
&
numer
,
void
divComplexByRealMultiChannel
(
const
vector
<
Mat
>
&
numer
,
const
vector
<
Mat
>
&
denom
,
vector
<
Mat
>
&
dst
)
const
vector
<
Mat
>
&
denom
,
vector
<
Mat
>
&
dst
)
{
{
for
(
int
i
=
0
;
unsigned
(
i
)
<
numer
.
size
();
i
++
)
for
(
int
i
=
0
;
unsigned
(
i
)
<
numer
.
size
();
i
++
)
{
{
divComplexByReal
(
numer
[
i
],
denom
[
i
],
dst
[
i
]);
divComplexByReal
(
numer
[
i
],
denom
[
i
],
dst
[
i
]);
}
}
}
}
// power of 2 of the absolute value of the complex
// power of 2 of the absolute value of the complex
Mat
pow2absComplex
(
InputArray
src
){
Mat
pow2absComplex
(
InputArray
src
){
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
Mat
sPanels
[
2
];
Mat
sPanels
[
2
];
split
(
S
,
sPanels
);
split
(
S
,
sPanels
);
return
sPanels
[
0
].
mul
(
sPanels
[
0
])
+
sPanels
[
1
].
mul
(
sPanels
[
1
]);
return
sPanels
[
0
].
mul
(
sPanels
[
0
])
+
sPanels
[
1
].
mul
(
sPanels
[
1
]);
}
}
}
}
namespace
cv
namespace
cv
...
@@ -180,129 +180,129 @@ namespace ximgproc
...
@@ -180,129 +180,129 @@ namespace ximgproc
void
l0Smooth
(
InputArray
src
,
OutputArray
dst
,
double
lambda
,
double
kappa
)
void
l0Smooth
(
InputArray
src
,
OutputArray
dst
,
double
lambda
,
double
kappa
)
{
{
Mat
S
=
src
.
getMat
();
Mat
S
=
src
.
getMat
();
CV_Assert
(
!
S
.
empty
());
CV_Assert
(
!
S
.
empty
());
CV_Assert
(
S
.
depth
()
==
CV_8U
||
S
.
depth
()
==
CV_16U
CV_Assert
(
S
.
depth
()
==
CV_8U
||
S
.
depth
()
==
CV_16U
||
S
.
depth
()
==
CV_32F
||
S
.
depth
()
==
CV_64F
);
||
S
.
depth
()
==
CV_32F
||
S
.
depth
()
==
CV_64F
);
dst
.
create
(
src
.
size
(),
src
.
type
());
dst
.
create
(
src
.
size
(),
src
.
type
());
if
(
S
.
data
==
dst
.
getMat
().
data
){
if
(
S
.
data
==
dst
.
getMat
().
data
){
S
=
S
.
clone
();
S
=
S
.
clone
();
}
}
if
(
S
.
depth
()
==
CV_8U
)
if
(
S
.
depth
()
==
CV_8U
)
{
{
S
.
convertTo
(
S
,
CV_32F
,
1
/
255.0
f
);
S
.
convertTo
(
S
,
CV_32F
,
1
/
255.0
f
);
}
}
else
if
(
S
.
depth
()
==
CV_16U
)
else
if
(
S
.
depth
()
==
CV_16U
)
{
{
S
.
convertTo
(
S
,
CV_32F
,
1
/
65535.0
f
);
S
.
convertTo
(
S
,
CV_32F
,
1
/
65535.0
f
);
}
else
if
(
S
.
depth
()
==
CV_64F
){
}
else
if
(
S
.
depth
()
==
CV_64F
){
S
.
convertTo
(
S
,
CV_32F
);
S
.
convertTo
(
S
,
CV_32F
);
}
}
const
double
betaMax
=
100000
;
const
double
betaMax
=
100000
;
// gradient operators in frequency domain
// gradient operators in frequency domain
Mat
otfFx
,
otfFy
;
Mat
otfFx
,
otfFy
;
float
kernel
[
2
]
=
{
-
1
,
1
};
float
kernel
[
2
]
=
{
-
1
,
1
};
float
kernel_inv
[
2
]
=
{
1
,
-
1
};
float
kernel_inv
[
2
]
=
{
1
,
-
1
};
psf2otf
(
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
),
otfFx
,
S
.
rows
,
S
.
cols
);
psf2otf
(
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
),
otfFx
,
S
.
rows
,
S
.
cols
);
psf2otf
(
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
),
otfFy
,
S
.
rows
,
S
.
cols
);
psf2otf
(
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
),
otfFy
,
S
.
rows
,
S
.
cols
);
vector
<
Mat
>
denomConst
;
vector
<
Mat
>
denomConst
;
Mat
tmp
=
pow2absComplex
(
otfFx
)
+
pow2absComplex
(
otfFy
);
Mat
tmp
=
pow2absComplex
(
otfFx
)
+
pow2absComplex
(
otfFy
);
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
denomConst
.
push_back
(
tmp
);
denomConst
.
push_back
(
tmp
);
}
}
// input image in frequency domain
// input image in frequency domain
vector
<
Mat
>
numerConst
;
vector
<
Mat
>
numerConst
;
dftMultiChannel
(
S
,
numerConst
);
dftMultiChannel
(
S
,
numerConst
);
/*********************************
/*********************************
* solver
* solver
*********************************/
*********************************/
double
beta
=
2
*
lambda
;
double
beta
=
2
*
lambda
;
while
(
beta
<
betaMax
){
while
(
beta
<
betaMax
){
// h, v subproblem
// h, v subproblem
Mat
h
,
v
;
Mat
h
,
v
;
filter2D
(
S
,
h
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
filter2D
(
S
,
h
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
0
,
BORDER_REPLICATE
);
0
,
BORDER_REPLICATE
);
filter2D
(
S
,
v
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
filter2D
(
S
,
v
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel
),
Point
(
0
,
0
),
0
,
BORDER_REPLICATE
);
0
,
BORDER_REPLICATE
);
Mat
hvMag
=
h
.
mul
(
h
)
+
v
.
mul
(
v
);
Mat
hvMag
=
h
.
mul
(
h
)
+
v
.
mul
(
v
);
Mat
mask
;
Mat
mask
;
if
(
S
.
channels
()
==
1
)
if
(
S
.
channels
()
==
1
)
{
{
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
}
}
else
if
(
S
.
channels
()
>
1
)
else
if
(
S
.
channels
()
>
1
)
{
{
Mat
*
channels
=
new
Mat
[
S
.
channels
()];
Mat
*
channels
=
new
Mat
[
S
.
channels
()];
split
(
hvMag
,
channels
);
split
(
hvMag
,
channels
);
hvMag
=
channels
[
0
];
hvMag
=
channels
[
0
];
for
(
int
i
=
1
;
i
<
S
.
channels
();
i
++
){
for
(
int
i
=
1
;
i
<
S
.
channels
();
i
++
){
hvMag
=
hvMag
+
channels
[
i
];
hvMag
=
hvMag
+
channels
[
i
];
}
}
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
threshold
(
hvMag
,
mask
,
lambda
/
beta
,
1
,
THRESH_BINARY
);
Mat
in
[]
=
{
mask
,
mask
,
mask
};
Mat
in
[]
=
{
mask
,
mask
,
mask
};
merge
(
in
,
3
,
mask
);
merge
(
in
,
3
,
mask
);
delete
[]
channels
;
delete
[]
channels
;
}
}
h
=
h
.
mul
(
mask
);
h
=
h
.
mul
(
mask
);
v
=
v
.
mul
(
mask
);
v
=
v
.
mul
(
mask
);
// S subproblem
// S subproblem
vector
<
Mat
>
denom
(
S
.
channels
());
vector
<
Mat
>
denom
(
S
.
channels
());
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
denom
[
i
]
=
beta
*
denomConst
[
i
]
+
1
;
denom
[
i
]
=
beta
*
denomConst
[
i
]
+
1
;
}
}
Mat
hGrad
,
vGrad
;
Mat
hGrad
,
vGrad
;
filter2D
(
h
,
hGrad
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
));
filter2D
(
h
,
hGrad
,
-
1
,
Mat
(
1
,
2
,
CV_32FC1
,
kernel_inv
));
filter2D
(
v
,
vGrad
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
));
filter2D
(
v
,
vGrad
,
-
1
,
Mat
(
2
,
1
,
CV_32FC1
,
kernel_inv
));
vector
<
Mat
>
hvGradFreq
;
vector
<
Mat
>
hvGradFreq
;
dftMultiChannel
(
hGrad
+
vGrad
,
hvGradFreq
);
dftMultiChannel
(
hGrad
+
vGrad
,
hvGradFreq
);
vector
<
Mat
>
numer
(
S
.
channels
());
vector
<
Mat
>
numer
(
S
.
channels
());
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
for
(
int
i
=
0
;
i
<
S
.
channels
();
i
++
){
numer
[
i
]
=
numerConst
[
i
]
+
hvGradFreq
[
i
]
*
beta
;
numer
[
i
]
=
numerConst
[
i
]
+
hvGradFreq
[
i
]
*
beta
;
}
}
vector
<
Mat
>
sFreq
(
S
.
channels
());
vector
<
Mat
>
sFreq
(
S
.
channels
());
divComplexByRealMultiChannel
(
numer
,
denom
,
sFreq
);
divComplexByRealMultiChannel
(
numer
,
denom
,
sFreq
);
idftMultiChannel
(
sFreq
,
S
);
idftMultiChannel
(
sFreq
,
S
);
beta
=
beta
*
kappa
;
beta
=
beta
*
kappa
;
}
}
Mat
D
=
dst
.
getMat
();
Mat
D
=
dst
.
getMat
();
if
(
D
.
depth
()
==
CV_8U
)
if
(
D
.
depth
()
==
CV_8U
)
{
{
S
.
convertTo
(
D
,
CV_8U
,
255
);
S
.
convertTo
(
D
,
CV_8U
,
255
);
}
}
else
if
(
D
.
depth
()
==
CV_16U
)
else
if
(
D
.
depth
()
==
CV_16U
)
{
{
S
.
convertTo
(
D
,
CV_16U
,
65535
);
S
.
convertTo
(
D
,
CV_16U
,
65535
);
}
else
if
(
D
.
depth
()
==
CV_64F
){
}
else
if
(
D
.
depth
()
==
CV_64F
){
S
.
convertTo
(
D
,
CV_64F
);
S
.
convertTo
(
D
,
CV_64F
);
}
else
{
}
else
{
S
.
copyTo
(
D
);
S
.
copyTo
(
D
);
}
}
}
}
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment