Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
087210de
Commit
087210de
authored
Jun 20, 2017
by
Vladislav Sovrasov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
face: refactoring of factory methods
parent
aa0d8060
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
314 additions
and
263 deletions
+314
-263
face.hpp
modules/face/include/opencv2/face.hpp
+4
-4
bif.hpp
modules/face/include/opencv2/face/bif.hpp
+7
-7
facerec.hpp
modules/face/include/opencv2/face/facerec.hpp
+129
-105
facerec_demo.cpp
modules/face/samples/facerec_demo.cpp
+3
-3
facerec_eigenfaces.cpp
modules/face/samples/facerec_eigenfaces.cpp
+4
-4
facerec_fisherfaces.cpp
modules/face/samples/facerec_fisherfaces.cpp
+3
-3
facerec_lbph.cpp
modules/face/samples/facerec_lbph.cpp
+1
-1
facerec_save_load.cpp
modules/face/samples/facerec_save_load.cpp
+2
-3
facerec_video.cpp
modules/face/samples/facerec_video.cpp
+1
-1
bif.cpp
modules/face/src/bif.cpp
+1
-1
eigen_faces.cpp
modules/face/src/eigen_faces.cpp
+9
-5
face_basic.cpp
modules/face/src/face_basic.cpp
+90
-0
face_utils.hpp
modules/face/src/face_utils.hpp
+33
-100
facerec.cpp
modules/face/src/facerec.cpp
+4
-4
fisher_faces.cpp
modules/face/src/fisher_faces.cpp
+9
-5
lbph_faces.cpp
modules/face/src/lbph_faces.cpp
+9
-10
precomp.hpp
modules/face/src/precomp.hpp
+0
-2
test_bif.cpp
modules/face/test/test_bif.cpp
+5
-5
No files found.
modules/face/include/opencv2/face.hpp
View file @
087210de
...
@@ -318,7 +318,7 @@ public:
...
@@ -318,7 +318,7 @@ public:
The suffix const means that prediction does not affect the internal model state, so the method can
The suffix const means that prediction does not affect the internal model state, so the method can
be safely called from within different threads.
be safely called from within different threads.
*/
*/
CV_WRAP
virtual
void
sav
e
(
const
String
&
filename
)
const
;
CV_WRAP
virtual
void
writ
e
(
const
String
&
filename
)
const
;
/** @brief Loads a FaceRecognizer and its model state.
/** @brief Loads a FaceRecognizer and its model state.
...
@@ -327,16 +327,16 @@ public:
...
@@ -327,16 +327,16 @@ public:
FaceRecognizer::load(FileStorage& fs) in turn gets called by
FaceRecognizer::load(FileStorage& fs) in turn gets called by
FaceRecognizer::load(const String& filename), to ease saving a model.
FaceRecognizer::load(const String& filename), to ease saving a model.
*/
*/
CV_WRAP
virtual
void
lo
ad
(
const
String
&
filename
);
CV_WRAP
virtual
void
re
ad
(
const
String
&
filename
);
/** @overload
/** @overload
Saves this model to a given FileStorage.
Saves this model to a given FileStorage.
@param fs The FileStorage to store this FaceRecognizer to.
@param fs The FileStorage to store this FaceRecognizer to.
*/
*/
virtual
void
sav
e
(
FileStorage
&
fs
)
const
=
0
;
virtual
void
writ
e
(
FileStorage
&
fs
)
const
=
0
;
/** @overload */
/** @overload */
virtual
void
load
(
const
FileStorage
&
fs
)
=
0
;
virtual
void
read
(
const
FileNode
&
fn
)
=
0
;
/** @brief Sets string info for the specified model's label.
/** @brief Sets string info for the specified model's label.
...
...
modules/face/include/opencv2/face/bif.hpp
View file @
087210de
...
@@ -68,14 +68,14 @@ public:
...
@@ -68,14 +68,14 @@ public:
*/
*/
CV_WRAP
virtual
void
compute
(
InputArray
image
,
CV_WRAP
virtual
void
compute
(
InputArray
image
,
OutputArray
features
)
const
=
0
;
OutputArray
features
)
const
=
0
;
};
/**
/**
* @param num_bands The number of filter bands (<=8) used for computing BIF.
* @param num_bands The number of filter bands (<=8) used for computing BIF.
* @param num_rotations The number of image rotations for computing BIF.
* @param num_rotations The number of image rotations for computing BIF.
* @returns Object for computing BIF.
* @returns Object for computing BIF.
*/
*/
CV_EXPORTS_W
cv
::
Ptr
<
BIF
>
createBIF
(
int
num_bands
=
8
,
int
num_rotations
=
12
);
CV_WRAP
static
Ptr
<
BIF
>
create
(
int
num_bands
=
8
,
int
num_rotations
=
12
);
};
}
// namespace cv
}
// namespace cv
}
// namespace face
}
// namespace face
...
...
modules/face/include/opencv2/face/facerec.hpp
View file @
087210de
...
@@ -21,82 +21,106 @@ class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
...
@@ -21,82 +21,106 @@ class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
{
{
public
:
public
:
/** @see setNumComponents */
/** @see setNumComponents */
CV_WRAP
virtual
int
getNumComponents
()
const
=
0
;
CV_WRAP
int
getNumComponents
()
const
;
/** @copybrief getNumComponents @see getNumComponents */
/** @copybrief getNumComponents @see getNumComponents */
CV_WRAP
v
irtual
void
setNumComponents
(
int
val
)
=
0
;
CV_WRAP
v
oid
setNumComponents
(
int
val
)
;
/** @see setThreshold */
/** @see setThreshold */
CV_WRAP
virtual
double
getThreshold
()
const
=
0
;
CV_WRAP
double
getThreshold
()
const
;
/** @copybrief getThreshold @see getThreshold */
/** @copybrief getThreshold @see getThreshold */
CV_WRAP
virtual
void
setThreshold
(
double
val
)
=
0
;
CV_WRAP
void
setThreshold
(
double
val
);
CV_WRAP
virtual
std
::
vector
<
cv
::
Mat
>
getProjections
()
const
=
0
;
CV_WRAP
std
::
vector
<
cv
::
Mat
>
getProjections
()
const
;
CV_WRAP
virtual
cv
::
Mat
getLabels
()
const
=
0
;
CV_WRAP
cv
::
Mat
getLabels
()
const
;
CV_WRAP
virtual
cv
::
Mat
getEigenValues
()
const
=
0
;
CV_WRAP
cv
::
Mat
getEigenValues
()
const
;
CV_WRAP
virtual
cv
::
Mat
getEigenVectors
()
const
=
0
;
CV_WRAP
cv
::
Mat
getEigenVectors
()
const
;
CV_WRAP
virtual
cv
::
Mat
getMean
()
const
=
0
;
CV_WRAP
cv
::
Mat
getMean
()
const
;
virtual
void
read
(
const
FileNode
&
fn
);
virtual
void
write
(
FileStorage
&
fs
)
const
;
using
FaceRecognizer
::
read
;
using
FaceRecognizer
::
write
;
protected
:
int
_num_components
;
double
_threshold
;
std
::
vector
<
Mat
>
_projections
;
Mat
_labels
;
Mat
_eigenvectors
;
Mat
_eigenvalues
;
Mat
_mean
;
};
class
CV_EXPORTS_W
EigenFaceRecognizer
:
public
BasicFaceRecognizer
{
public
:
/**
@param num_components The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.
@param threshold The threshold applied in the prediction.
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
### Model internal data:
- num_components see createEigenFaceRecognizer.
- threshold see createEigenFaceRecognizer.
- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The threshold applied in the prediction. If the distance to the nearest neighbor is
larger than the threshold, this method returns -1.
*/
CV_WRAP
static
Ptr
<
EigenFaceRecognizer
>
create
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
};
class
CV_EXPORTS_W
FisherFaceRecognizer
:
public
BasicFaceRecognizer
{
public
:
/**
@param num_components The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
### Model internal data:
- num_components see createFisherFaceRecognizer.
- threshold see createFisherFaceRecognizer.
- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The labels corresponding to the projections.
*/
CV_WRAP
static
Ptr
<
FisherFaceRecognizer
>
create
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
};
};
/**
@param num_components The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.
@param threshold The threshold applied in the prediction.
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
### Model internal data:
- num_components see createEigenFaceRecognizer.
- threshold see createEigenFaceRecognizer.
- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The threshold applied in the prediction. If the distance to the nearest neighbor is
larger than the threshold, this method returns -1.
*/
CV_EXPORTS_W
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
/**
@param num_components The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
### Notes:
- Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.
- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.
- This model does not support updating.
### Model internal data:
- num_components see createFisherFaceRecognizer.
- threshold see createFisherFaceRecognizer.
- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The labels corresponding to the projections.
*/
CV_EXPORTS_W
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
);
class
CV_EXPORTS_W
LBPHFaceRecognizer
:
public
FaceRecognizer
class
CV_EXPORTS_W
LBPHFaceRecognizer
:
public
FaceRecognizer
{
{
...
@@ -123,41 +147,41 @@ public:
...
@@ -123,41 +147,41 @@ public:
CV_WRAP
virtual
void
setThreshold
(
double
val
)
=
0
;
CV_WRAP
virtual
void
setThreshold
(
double
val
)
=
0
;
CV_WRAP
virtual
std
::
vector
<
cv
::
Mat
>
getHistograms
()
const
=
0
;
CV_WRAP
virtual
std
::
vector
<
cv
::
Mat
>
getHistograms
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getLabels
()
const
=
0
;
CV_WRAP
virtual
cv
::
Mat
getLabels
()
const
=
0
;
};
/**
/**
@param radius The radius used for building the Circular Local Binary Pattern. The greater the
@param radius The radius used for building the Circular Local Binary Pattern. The greater the
radius, the
radius, the
@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
the higher the computational cost.
the higher the computational cost.
@param grid_x The number of cells in the horizontal direction, 8 is a common value used in
@param grid_x The number of cells in the horizontal direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
feature vector.
@param grid_y The number of cells in the vertical direction, 8 is a common value used in
@param grid_y The number of cells in the vertical direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.
feature vector.
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.
is larger than the threshold, this method returns -1.
### Notes:
### Notes:
- The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- The Circular Local Binary Patterns (used in training and prediction) expect the data given as
grayscale images, use cvtColor to convert between the color spaces.
grayscale images, use cvtColor to convert between the color spaces.
- This model supports updating.
- This model supports updating.
### Model internal data:
### Model internal data:
- radius see createLBPHFaceRecognizer.
- radius see createLBPHFaceRecognizer.
- neighbors see createLBPHFaceRecognizer.
- neighbors see createLBPHFaceRecognizer.
- grid_x see createLBPHFaceRecognizer.
- grid_x see createLBPHFaceRecognizer.
- grid_y see createLBPHFaceRecognizer.
- grid_y see createLBPHFaceRecognizer.
- threshold see createLBPHFaceRecognizer.
- threshold see createLBPHFaceRecognizer.
- histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- histograms Local Binary Patterns Histograms calculated from the given training data (empty if
none was given).
none was given).
- labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- labels Labels corresponding to the calculated Local Binary Patterns Histograms.
*/
*/
CV_EXPORTS_W
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
=
1
,
int
neighbors
=
8
,
int
grid_x
=
8
,
int
grid_y
=
8
,
double
threshold
=
DBL_MAX
);
CV_WRAP
static
Ptr
<
LBPHFaceRecognizer
>
create
(
int
radius
=
1
,
int
neighbors
=
8
,
int
grid_x
=
8
,
int
grid_y
=
8
,
double
threshold
=
DBL_MAX
);
};
//! @}
//! @}
...
...
modules/face/samples/facerec_demo.cpp
View file @
087210de
...
@@ -121,14 +121,14 @@ int main(int argc, const char *argv[]) {
...
@@ -121,14 +121,14 @@ int main(int argc, const char *argv[]) {
// 10 principal components (read Eigenfaces), then call
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
// the factory method like this:
//
//
//
cv::createEigenFaceRecognizer
(10);
//
EigenFaceRecognizer::create
(10);
//
//
// If you want to create a FaceRecognizer with a
// If you want to create a FaceRecognizer with a
// confidennce threshold, call it with:
// confidennce threshold, call it with:
//
//
//
cv::createEigenFaceRecognizer
(10, 123.0);
//
EigenFaceRecognizer::create
(10, 123.0);
//
//
Ptr
<
BasicFaceRecognizer
>
model
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model
=
EigenFaceRecognizer
::
create
();
for
(
int
i
=
0
;
i
<
nlabels
;
i
++
)
for
(
int
i
=
0
;
i
<
nlabels
;
i
++
)
model
->
setLabelInfo
(
i
,
labelsInfo
[
i
]);
model
->
setLabelInfo
(
i
,
labelsInfo
[
i
]);
model
->
train
(
images
,
labels
);
model
->
train
(
images
,
labels
);
...
...
modules/face/samples/facerec_eigenfaces.cpp
View file @
087210de
...
@@ -115,19 +115,19 @@ int main(int argc, const char *argv[]) {
...
@@ -115,19 +115,19 @@ int main(int argc, const char *argv[]) {
// 10 principal components (read Eigenfaces), then call
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
// the factory method like this:
//
//
//
cv::createEigenFaceRecognizer
(10);
//
EigenFaceRecognizer::create
(10);
//
//
// If you want to create a FaceRecognizer with a
// If you want to create a FaceRecognizer with a
// confidence threshold (e.g. 123.0), call it with:
// confidence threshold (e.g. 123.0), call it with:
//
//
//
cv::createEigenFaceRecognizer
(10, 123.0);
//
EigenFaceRecognizer::create
(10, 123.0);
//
//
// If you want to use _all_ Eigenfaces and have a threshold,
// If you want to use _all_ Eigenfaces and have a threshold,
// then call the method like this:
// then call the method like this:
//
//
//
cv::createEigenFaceRecognizer
(0, 123.0);
//
EigenFaceRecognizer::create
(0, 123.0);
//
//
Ptr
<
BasicFaceRecognizer
>
model
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model
=
EigenFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// The following line predicts the label of a given
// test image:
// test image:
...
...
modules/face/samples/facerec_fisherfaces.cpp
View file @
087210de
...
@@ -114,7 +114,7 @@ int main(int argc, const char *argv[]) {
...
@@ -114,7 +114,7 @@ int main(int argc, const char *argv[]) {
// If you just want to keep 10 Fisherfaces, then call
// If you just want to keep 10 Fisherfaces, then call
// the factory method like this:
// the factory method like this:
//
//
//
cv::createFisherFaceRecognizer
(10);
//
FisherFaceRecognizer::create
(10);
//
//
// However it is not useful to discard Fisherfaces! Please
// However it is not useful to discard Fisherfaces! Please
// always try to use _all_ available Fisherfaces for
// always try to use _all_ available Fisherfaces for
...
@@ -124,9 +124,9 @@ int main(int argc, const char *argv[]) {
...
@@ -124,9 +124,9 @@ int main(int argc, const char *argv[]) {
// confidence threshold (e.g. 123.0) and use _all_
// confidence threshold (e.g. 123.0) and use _all_
// Fisherfaces, then call it with:
// Fisherfaces, then call it with:
//
//
//
cv::createFisherFaceRecognizer
(0, 123.0);
//
FisherFaceRecognizer::create
(0, 123.0);
//
//
Ptr
<
BasicFaceRecognizer
>
model
=
createFisherFaceRecognizer
();
Ptr
<
FisherFaceRecognizer
>
model
=
FisherFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// The following line predicts the label of a given
// test image:
// test image:
...
...
modules/face/samples/facerec_lbph.cpp
View file @
087210de
...
@@ -103,7 +103,7 @@ int main(int argc, const char *argv[]) {
...
@@ -103,7 +103,7 @@ int main(int argc, const char *argv[]) {
//
//
// cv::createLBPHFaceRecognizer(1,8,8,8,123.0)
// cv::createLBPHFaceRecognizer(1,8,8,8,123.0)
//
//
Ptr
<
LBPHFaceRecognizer
>
model
=
createLBPHFaceRecognizer
();
Ptr
<
LBPHFaceRecognizer
>
model
=
LBPHFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
model
->
train
(
images
,
labels
);
// The following line predicts the label of a given
// The following line predicts the label of a given
// test image:
// test image:
...
...
modules/face/samples/facerec_save_load.cpp
View file @
087210de
...
@@ -127,7 +127,7 @@ int main(int argc, const char *argv[]) {
...
@@ -127,7 +127,7 @@ int main(int argc, const char *argv[]) {
//
//
// cv::createEigenFaceRecognizer(0, 123.0);
// cv::createEigenFaceRecognizer(0, 123.0);
//
//
Ptr
<
BasicFaceRecognizer
>
model0
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model0
=
EigenFaceRecognizer
::
create
();
model0
->
train
(
images
,
labels
);
model0
->
train
(
images
,
labels
);
// save the model to eigenfaces_at.yaml
// save the model to eigenfaces_at.yaml
model0
->
save
(
"eigenfaces_at.yml"
);
model0
->
save
(
"eigenfaces_at.yml"
);
...
@@ -135,8 +135,7 @@ int main(int argc, const char *argv[]) {
...
@@ -135,8 +135,7 @@ int main(int argc, const char *argv[]) {
//
//
// Now create a new Eigenfaces Recognizer
// Now create a new Eigenfaces Recognizer
//
//
Ptr
<
BasicFaceRecognizer
>
model1
=
createEigenFaceRecognizer
();
Ptr
<
EigenFaceRecognizer
>
model1
=
Algorithm
::
load
<
EigenFaceRecognizer
>
(
"eigenfaces_at.yml"
);
model1
->
load
(
"eigenfaces_at.yml"
);
// The following line predicts the label of a given
// The following line predicts the label of a given
// test image:
// test image:
int
predictedLabel
=
model1
->
predict
(
testSample
);
int
predictedLabel
=
model1
->
predict
(
testSample
);
...
...
modules/face/samples/facerec_video.cpp
View file @
087210de
...
@@ -79,7 +79,7 @@ int main(int argc, const char *argv[]) {
...
@@ -79,7 +79,7 @@ int main(int argc, const char *argv[]) {
int
im_width
=
images
[
0
].
cols
;
int
im_width
=
images
[
0
].
cols
;
int
im_height
=
images
[
0
].
rows
;
int
im_height
=
images
[
0
].
rows
;
// Create a FaceRecognizer and train it on the given images:
// Create a FaceRecognizer and train it on the given images:
Ptr
<
BasicFaceRecognizer
>
model
=
createFisherFaceRecognizer
();
Ptr
<
FisherFaceRecognizer
>
model
=
FisherFaceRecognizer
::
create
();
model
->
train
(
images
,
labels
);
model
->
train
(
images
,
labels
);
// That's it for learning the Face Recognition model. You now
// That's it for learning the Face Recognition model. You now
// need to create the classifier for the task of Face Detection.
// need to create the classifier for the task of Face Detection.
...
...
modules/face/src/bif.cpp
View file @
087210de
...
@@ -216,6 +216,6 @@ void BIFImpl::computeUnit(int unit_idx, const cv::Mat &img,
...
@@ -216,6 +216,6 @@ void BIFImpl::computeUnit(int unit_idx, const cv::Mat &img,
}
// namespace
}
// namespace
cv
::
Ptr
<
cv
::
face
::
BIF
>
cv
::
face
::
createBIF
(
int
num_bands
,
int
num_rotations
)
{
cv
::
Ptr
<
cv
::
face
::
BIF
>
cv
::
face
::
BIF
::
create
(
int
num_bands
,
int
num_rotations
)
{
return
cv
::
Ptr
<
cv
::
face
::
BIF
>
(
new
BIFImpl
(
num_bands
,
num_rotations
));
return
cv
::
Ptr
<
cv
::
face
::
BIF
>
(
new
BIFImpl
(
num_bands
,
num_rotations
));
}
}
modules/face/src/eigen_faces.cpp
View file @
087210de
...
@@ -16,7 +16,8 @@
...
@@ -16,7 +16,8 @@
* See <http://www.opensource.org/licenses/bsd-license>
* See <http://www.opensource.org/licenses/bsd-license>
*/
*/
#include "precomp.hpp"
#include "precomp.hpp"
#include "face_basic.hpp"
#include <opencv2/face.hpp>
#include "face_utils.hpp"
#include <set>
#include <set>
#include <limits>
#include <limits>
#include <iostream>
#include <iostream>
...
@@ -28,14 +29,17 @@ namespace face
...
@@ -28,14 +29,17 @@ namespace face
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 71–86.
// Cognitive Neuroscience 3 (1991), 71–86.
class
Eigenfaces
:
public
BasicFaceRecognizerImpl
class
Eigenfaces
:
public
EigenFaceRecognizer
{
{
public
:
public
:
// Initializes an empty Eigenfaces model.
// Initializes an empty Eigenfaces model.
Eigenfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
Eigenfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
BasicFaceRecognizerImpl
(
num_components
,
threshold
)
//: BasicFaceRecognizerImpl(num_components, threshold)
{}
{
_num_components
=
num_components
;
_threshold
=
threshold
;
}
// Computes an Eigenfaces model with images in src and corresponding labels
// Computes an Eigenfaces model with images in src and corresponding labels
// in labels.
// in labels.
...
@@ -122,7 +126,7 @@ void Eigenfaces::predict(InputArray _src, Ptr<PredictCollector> collector) const
...
@@ -122,7 +126,7 @@ void Eigenfaces::predict(InputArray _src, Ptr<PredictCollector> collector) const
}
}
}
}
Ptr
<
BasicFaceRecognizer
>
createEigenFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
EigenFaceRecognizer
>
EigenFaceRecognizer
::
create
(
int
num_components
,
double
threshold
)
{
{
return
makePtr
<
Eigenfaces
>
(
num_components
,
threshold
);
return
makePtr
<
Eigenfaces
>
(
num_components
,
threshold
);
}
}
...
...
modules/face/src/face_basic.cpp
0 → 100644
View file @
087210de
#include "opencv2/face.hpp"
#include "face_utils.hpp"
#include "precomp.hpp"
using
namespace
cv
;
using
namespace
face
;
int
BasicFaceRecognizer
::
getNumComponents
()
const
{
return
_num_components
;
}
void
BasicFaceRecognizer
::
setNumComponents
(
int
val
)
{
_num_components
=
val
;
}
double
BasicFaceRecognizer
::
getThreshold
()
const
{
return
_threshold
;
}
void
BasicFaceRecognizer
::
setThreshold
(
double
val
)
{
_threshold
=
val
;
}
std
::
vector
<
cv
::
Mat
>
BasicFaceRecognizer
::
getProjections
()
const
{
return
_projections
;
}
cv
::
Mat
BasicFaceRecognizer
::
getLabels
()
const
{
return
_labels
;
}
cv
::
Mat
BasicFaceRecognizer
::
getEigenValues
()
const
{
return
_eigenvalues
;
}
cv
::
Mat
BasicFaceRecognizer
::
getEigenVectors
()
const
{
return
_eigenvectors
;
}
cv
::
Mat
BasicFaceRecognizer
::
getMean
()
const
{
return
_mean
;
}
void
BasicFaceRecognizer
::
read
(
const
FileNode
&
fs
)
{
//read matrices
fs
[
"num_components"
]
>>
_num_components
;
fs
[
"mean"
]
>>
_mean
;
fs
[
"eigenvalues"
]
>>
_eigenvalues
;
fs
[
"eigenvectors"
]
>>
_eigenvectors
;
// read sequences
readFileNodeList
(
fs
[
"projections"
],
_projections
);
fs
[
"labels"
]
>>
_labels
;
const
FileNode
&
fn
=
fs
[
"labelsInfo"
];
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
_labelsInfo
.
clear
();
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
LabelInfo
item
;
it
>>
item
;
_labelsInfo
.
insert
(
std
::
make_pair
(
item
.
label
,
item
.
value
));
}
}
}
void
BasicFaceRecognizer
::
write
(
FileStorage
&
fs
)
const
{
// write matrices
fs
<<
"num_components"
<<
_num_components
;
fs
<<
"mean"
<<
_mean
;
fs
<<
"eigenvalues"
<<
_eigenvalues
;
fs
<<
"eigenvectors"
<<
_eigenvectors
;
// write sequences
writeFileNodeList
(
fs
,
"projections"
,
_projections
);
fs
<<
"labels"
<<
_labels
;
fs
<<
"labelsInfo"
<<
"["
;
for
(
std
::
map
<
int
,
String
>::
const_iterator
it
=
_labelsInfo
.
begin
();
it
!=
_labelsInfo
.
end
();
it
++
)
fs
<<
LabelInfo
(
it
->
first
,
it
->
second
);
fs
<<
"]"
;
}
modules/face/src/face_
basic
.hpp
→
modules/face/src/face_
utils
.hpp
View file @
087210de
#ifndef __OPENCV_FACE_BASIC_HPP
// This file is part of OpenCV project.
#define __OPENCV_FACE_BASIC_HPP
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#i
nclude "opencv2/face.hpp"
#i
fndef __OPENCV_FACE_UTILS_HPP
#
include "precomp.hpp"
#
define __OPENCV_FACE_UTILS_HPP
#include <set>
#include "precomp.hpp"
#include <limits>
#include <iostream>
using
namespace
cv
;
using
namespace
cv
;
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template
<
typename
_Tp
>
inline
void
readFileNodeList
(
const
FileNode
&
fn
,
std
::
vector
<
_Tp
>&
result
)
{
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
_Tp
item
;
it
>>
item
;
result
.
push_back
(
item
);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template
<
typename
_Tp
>
inline
void
writeFileNodeList
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
_Tp
>&
items
)
{
// typedefs
typedef
typename
std
::
vector
<
_Tp
>::
const_iterator
constVecIterator
;
// write the elements in item to fs
fs
<<
name
<<
"["
;
for
(
constVecIterator
it
=
items
.
begin
();
it
!=
items
.
end
();
++
it
)
{
fs
<<
*
it
;
}
fs
<<
"]"
;
}
inline
Mat
asRowMatrix
(
InputArrayOfArrays
src
,
int
rtype
,
double
alpha
=
1
,
double
beta
=
0
)
{
inline
Mat
asRowMatrix
(
InputArrayOfArrays
src
,
int
rtype
,
double
alpha
=
1
,
double
beta
=
0
)
{
// make sure the input data is a vector of matrices or vector of vector
// make sure the input data is a vector of matrices or vector of vector
if
(
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_MAT
&&
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_VECTOR
)
{
if
(
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_MAT
&&
src
.
kind
()
!=
_InputArray
::
STD_VECTOR_VECTOR
)
{
...
@@ -70,6 +43,32 @@ inline Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
...
@@ -70,6 +43,32 @@ inline Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
return
data
;
return
data
;
}
}
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template
<
typename
_Tp
>
inline
void
readFileNodeList
(
const
FileNode
&
fn
,
std
::
vector
<
_Tp
>&
result
)
{
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
_Tp
item
;
it
>>
item
;
result
.
push_back
(
item
);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template
<
typename
_Tp
>
inline
void
writeFileNodeList
(
FileStorage
&
fs
,
const
String
&
name
,
const
std
::
vector
<
_Tp
>&
items
)
{
// typedefs
typedef
typename
std
::
vector
<
_Tp
>::
const_iterator
constVecIterator
;
// write the elements in item to fs
fs
<<
name
<<
"["
;
for
(
constVecIterator
it
=
items
.
begin
();
it
!=
items
.
end
();
++
it
)
{
fs
<<
*
it
;
}
fs
<<
"]"
;
}
// Utility structure to load/save face label info (a pair of int and string) via FileStorage
// Utility structure to load/save face label info (a pair of int and string) via FileStorage
struct
LabelInfo
struct
LabelInfo
{
{
...
@@ -106,70 +105,4 @@ inline void read(const cv::FileNode& node, LabelInfo& x, const LabelInfo& defaul
...
@@ -106,70 +105,4 @@ inline void read(const cv::FileNode& node, LabelInfo& x, const LabelInfo& defaul
x
.
read
(
node
);
x
.
read
(
node
);
}
}
#endif
class
BasicFaceRecognizerImpl
:
public
cv
::
face
::
BasicFaceRecognizer
{
public
:
BasicFaceRecognizerImpl
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
_num_components
(
num_components
),
_threshold
(
threshold
)
{}
void
load
(
const
FileStorage
&
fs
)
{
//read matrices
fs
[
"num_components"
]
>>
_num_components
;
fs
[
"mean"
]
>>
_mean
;
fs
[
"eigenvalues"
]
>>
_eigenvalues
;
fs
[
"eigenvectors"
]
>>
_eigenvectors
;
// read sequences
readFileNodeList
(
fs
[
"projections"
],
_projections
);
fs
[
"labels"
]
>>
_labels
;
const
FileNode
&
fn
=
fs
[
"labelsInfo"
];
if
(
fn
.
type
()
==
FileNode
::
SEQ
)
{
_labelsInfo
.
clear
();
for
(
FileNodeIterator
it
=
fn
.
begin
();
it
!=
fn
.
end
();)
{
LabelInfo
item
;
it
>>
item
;
_labelsInfo
.
insert
(
std
::
make_pair
(
item
.
label
,
item
.
value
));
}
}
}
void
save
(
FileStorage
&
fs
)
const
{
// write matrices
fs
<<
"num_components"
<<
_num_components
;
fs
<<
"mean"
<<
_mean
;
fs
<<
"eigenvalues"
<<
_eigenvalues
;
fs
<<
"eigenvectors"
<<
_eigenvectors
;
// write sequences
writeFileNodeList
(
fs
,
"projections"
,
_projections
);
fs
<<
"labels"
<<
_labels
;
fs
<<
"labelsInfo"
<<
"["
;
for
(
std
::
map
<
int
,
String
>::
const_iterator
it
=
_labelsInfo
.
begin
();
it
!=
_labelsInfo
.
end
();
it
++
)
fs
<<
LabelInfo
(
it
->
first
,
it
->
second
);
fs
<<
"]"
;
}
CV_IMPL_PROPERTY
(
int
,
NumComponents
,
_num_components
)
CV_IMPL_PROPERTY
(
double
,
Threshold
,
_threshold
)
CV_IMPL_PROPERTY_RO
(
std
::
vector
<
cv
::
Mat
>
,
Projections
,
_projections
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
Labels
,
_labels
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
EigenValues
,
_eigenvalues
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
EigenVectors
,
_eigenvectors
)
CV_IMPL_PROPERTY_RO
(
cv
::
Mat
,
Mean
,
_mean
)
protected
:
int
_num_components
;
double
_threshold
;
std
::
vector
<
Mat
>
_projections
;
Mat
_labels
;
Mat
_eigenvectors
;
Mat
_eigenvalues
;
Mat
_mean
;
};
#endif // __OPENCV_FACE_BASIC_HPP
modules/face/src/facerec.cpp
View file @
087210de
...
@@ -54,21 +54,21 @@ void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels)
...
@@ -54,21 +54,21 @@ void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels)
CV_Error
(
Error
::
StsNotImplemented
,
error_msg
);
CV_Error
(
Error
::
StsNotImplemented
,
error_msg
);
}
}
void
FaceRecognizer
::
lo
ad
(
const
String
&
filename
)
void
FaceRecognizer
::
re
ad
(
const
String
&
filename
)
{
{
FileStorage
fs
(
filename
,
FileStorage
::
READ
);
FileStorage
fs
(
filename
,
FileStorage
::
READ
);
if
(
!
fs
.
isOpened
())
if
(
!
fs
.
isOpened
())
CV_Error
(
Error
::
StsError
,
"File can't be opened for reading!"
);
CV_Error
(
Error
::
StsError
,
"File can't be opened for reading!"
);
this
->
load
(
fs
);
this
->
read
(
fs
.
root
()
);
fs
.
release
();
fs
.
release
();
}
}
void
FaceRecognizer
::
sav
e
(
const
String
&
filename
)
const
void
FaceRecognizer
::
writ
e
(
const
String
&
filename
)
const
{
{
FileStorage
fs
(
filename
,
FileStorage
::
WRITE
);
FileStorage
fs
(
filename
,
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
())
if
(
!
fs
.
isOpened
())
CV_Error
(
Error
::
StsError
,
"File can't be opened for writing!"
);
CV_Error
(
Error
::
StsError
,
"File can't be opened for writing!"
);
this
->
sav
e
(
fs
);
this
->
writ
e
(
fs
);
fs
.
release
();
fs
.
release
();
}
}
...
...
modules/face/src/fisher_faces.cpp
View file @
087210de
...
@@ -16,7 +16,8 @@
...
@@ -16,7 +16,8 @@
* See <http://www.opensource.org/licenses/bsd-license>
* See <http://www.opensource.org/licenses/bsd-license>
*/
*/
#include "precomp.hpp"
#include "precomp.hpp"
#include "face_basic.hpp"
#include <opencv2/face.hpp>
#include "face_utils.hpp"
namespace
cv
{
namespace
face
{
namespace
cv
{
namespace
face
{
...
@@ -24,13 +25,16 @@ namespace cv { namespace face {
...
@@ -24,13 +25,16 @@ namespace cv { namespace face {
// faces: Recognition using class specific linear projection.". IEEE
// faces: Recognition using class specific linear projection.". IEEE
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// 711–720.
// 711–720.
class
Fisherfaces
:
public
BasicFaceRecognizerImpl
class
Fisherfaces
:
public
FisherFaceRecognizer
{
{
public
:
public
:
// Initializes an empty Fisherfaces model.
// Initializes an empty Fisherfaces model.
Fisherfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
Fisherfaces
(
int
num_components
=
0
,
double
threshold
=
DBL_MAX
)
:
BasicFaceRecognizerImpl
(
num_components
,
threshold
)
//: BasicFaceRecognizer(num_components, threshold)
{
}
{
_num_components
=
num_components
;
_threshold
=
threshold
;
}
// Computes a Fisherfaces model with images in src and corresponding labels
// Computes a Fisherfaces model with images in src and corresponding labels
// in labels.
// in labels.
...
@@ -142,7 +146,7 @@ void Fisherfaces::predict(InputArray _src, Ptr<PredictCollector> collector) cons
...
@@ -142,7 +146,7 @@ void Fisherfaces::predict(InputArray _src, Ptr<PredictCollector> collector) cons
}
}
}
}
Ptr
<
BasicFaceRecognizer
>
createFisherFaceRecognizer
(
int
num_components
,
double
threshold
)
Ptr
<
FisherFaceRecognizer
>
FisherFaceRecognizer
::
create
(
int
num_components
,
double
threshold
)
{
{
return
makePtr
<
Fisherfaces
>
(
num_components
,
threshold
);
return
makePtr
<
Fisherfaces
>
(
num_components
,
threshold
);
}
}
...
...
modules/face/src/lbph_faces.cpp
View file @
087210de
...
@@ -17,7 +17,7 @@
...
@@ -17,7 +17,7 @@
*/
*/
#include "precomp.hpp"
#include "precomp.hpp"
#include "opencv2/face.hpp"
#include "opencv2/face.hpp"
#include "face_
basic
.hpp"
#include "face_
utils
.hpp"
namespace
cv
{
namespace
face
{
namespace
cv
{
namespace
face
{
...
@@ -46,8 +46,8 @@ private:
...
@@ -46,8 +46,8 @@ private:
public
:
public
:
using
FaceRecognizer
::
save
;
using
FaceRecognizer
::
read
;
using
FaceRecognizer
::
load
;
using
FaceRecognizer
::
write
;
// Initializes this LBPH Model. The current implementation is rather fixed
// Initializes this LBPH Model. The current implementation is rather fixed
// as it uses the Extended Local Binary Patterns per default.
// as it uses the Extended Local Binary Patterns per default.
...
@@ -94,11 +94,11 @@ public:
...
@@ -94,11 +94,11 @@ public:
// Send all predict results to caller side for custom result handling
// Send all predict results to caller side for custom result handling
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
)
const
;
void
predict
(
InputArray
src
,
Ptr
<
PredictCollector
>
collector
)
const
;
// See FaceRecognizer::
load
.
// See FaceRecognizer::
write
.
void
load
(
const
FileStorage
&
fs
);
void
read
(
const
FileNode
&
fn
);
// See FaceRecognizer::save.
// See FaceRecognizer::save.
void
sav
e
(
FileStorage
&
fs
)
const
;
void
writ
e
(
FileStorage
&
fs
)
const
;
CV_IMPL_PROPERTY
(
int
,
GridX
,
_grid_x
)
CV_IMPL_PROPERTY
(
int
,
GridX
,
_grid_x
)
CV_IMPL_PROPERTY
(
int
,
GridY
,
_grid_y
)
CV_IMPL_PROPERTY
(
int
,
GridY
,
_grid_y
)
...
@@ -110,7 +110,7 @@ public:
...
@@ -110,7 +110,7 @@ public:
};
};
void
LBPH
::
load
(
const
FileStorag
e
&
fs
)
{
void
LBPH
::
read
(
const
FileNod
e
&
fs
)
{
fs
[
"radius"
]
>>
_radius
;
fs
[
"radius"
]
>>
_radius
;
fs
[
"neighbors"
]
>>
_neighbors
;
fs
[
"neighbors"
]
>>
_neighbors
;
fs
[
"grid_x"
]
>>
_grid_x
;
fs
[
"grid_x"
]
>>
_grid_x
;
...
@@ -132,7 +132,7 @@ void LBPH::load(const FileStorage& fs) {
...
@@ -132,7 +132,7 @@ void LBPH::load(const FileStorage& fs) {
}
}
// See FaceRecognizer::save.
// See FaceRecognizer::save.
void
LBPH
::
sav
e
(
FileStorage
&
fs
)
const
{
void
LBPH
::
writ
e
(
FileStorage
&
fs
)
const
{
fs
<<
"radius"
<<
_radius
;
fs
<<
"radius"
<<
_radius
;
fs
<<
"neighbors"
<<
_neighbors
;
fs
<<
"neighbors"
<<
_neighbors
;
fs
<<
"grid_x"
<<
_grid_x
;
fs
<<
"grid_x"
<<
_grid_x
;
...
@@ -407,11 +407,10 @@ void LBPH::predict(InputArray _src, Ptr<PredictCollector> collector) const {
...
@@ -407,11 +407,10 @@ void LBPH::predict(InputArray _src, Ptr<PredictCollector> collector) const {
}
}
}
}
Ptr
<
LBPHFaceRecognizer
>
createLBPHFaceRecognizer
(
int
radius
,
int
neighbors
,
Ptr
<
LBPHFaceRecognizer
>
LBPHFaceRecognizer
::
create
(
int
radius
,
int
neighbors
,
int
grid_x
,
int
grid_y
,
double
threshold
)
int
grid_x
,
int
grid_y
,
double
threshold
)
{
{
return
makePtr
<
LBPH
>
(
radius
,
neighbors
,
grid_x
,
grid_y
,
threshold
);
return
makePtr
<
LBPH
>
(
radius
,
neighbors
,
grid_x
,
grid_y
,
threshold
);
}
}
}}
}}
modules/face/src/precomp.hpp
View file @
087210de
...
@@ -49,10 +49,8 @@
...
@@ -49,10 +49,8 @@
#include "opencv2/core/private.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/persistence.hpp"
#include "opencv2/core/persistence.hpp"
#include <map>
#include <map>
#include <iostream>
#include <set>
#include <set>
#include <limits>
#include <limits>
#include <iostream>
#endif
#endif
modules/face/test/test_bif.cpp
View file @
087210de
...
@@ -40,27 +40,27 @@ the use of this software, even if advised of the possibility of such damage.
...
@@ -40,27 +40,27 @@ the use of this software, even if advised of the possibility of such damage.
TEST
(
CV_Face_BIF
,
can_create_default
)
{
TEST
(
CV_Face_BIF
,
can_create_default
)
{
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
;
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
;
EXPECT_NO_THROW
(
bif
=
cv
::
face
::
createBIF
());
EXPECT_NO_THROW
(
bif
=
cv
::
face
::
BIF
::
create
());
EXPECT_FALSE
(
bif
.
empty
());
EXPECT_FALSE
(
bif
.
empty
());
}
}
TEST
(
CV_Face_BIF
,
fails_when_zero_bands
)
{
TEST
(
CV_Face_BIF
,
fails_when_zero_bands
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
0
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
0
));
}
}
TEST
(
CV_Face_BIF
,
fails_when_too_many_bands
)
{
TEST
(
CV_Face_BIF
,
fails_when_too_many_bands
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
9
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
9
));
}
}
TEST
(
CV_Face_BIF
,
fails_when_zero_rotations
)
{
TEST
(
CV_Face_BIF
,
fails_when_zero_rotations
)
{
EXPECT_ANY_THROW
(
cv
::
face
::
createBIF
(
8
,
0
));
EXPECT_ANY_THROW
(
cv
::
face
::
BIF
::
create
(
8
,
0
));
}
}
TEST
(
CV_Face_BIF
,
can_compute
)
{
TEST
(
CV_Face_BIF
,
can_compute
)
{
cv
::
Mat
image
(
60
,
60
,
CV_32F
);
cv
::
Mat
image
(
60
,
60
,
CV_32F
);
cv
::
theRNG
().
fill
(
image
,
cv
::
RNG
::
UNIFORM
,
-
1
,
1
);
cv
::
theRNG
().
fill
(
image
,
cv
::
RNG
::
UNIFORM
,
-
1
,
1
);
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
=
cv
::
face
::
createBIF
();
cv
::
Ptr
<
cv
::
face
::
BIF
>
bif
=
cv
::
face
::
BIF
::
create
();
cv
::
Mat
fea
;
cv
::
Mat
fea
;
EXPECT_NO_THROW
(
bif
->
compute
(
image
,
fea
));
EXPECT_NO_THROW
(
bif
->
compute
(
image
,
fea
));
EXPECT_EQ
(
cv
::
Size
(
1
,
13188
),
fea
.
size
());
EXPECT_EQ
(
cv
::
Size
(
1
,
13188
),
fea
.
size
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment