Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv_contrib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv_contrib
Commits
053303ab
Commit
053303ab
authored
Apr 17, 2017
by
Aleksandr Rybnikov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added python scripts to estimating accuracy
parent
3f5b4655
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
861 additions
and
68 deletions
+861
-68
CMakeLists.txt
modules/dnn/CMakeLists.txt
+1
-1
dnn.hpp
modules/dnn/include/opencv2/dnn/dnn.hpp
+10
-0
pyopencv_dnn.hpp
modules/dnn/misc/python/pyopencv_dnn.hpp
+6
-0
enet-classes.txt
modules/dnn/samples/enet-classes.txt
+21
-0
tf_inception.cpp
modules/dnn/samples/tf_inception.cpp
+1
-1
torch_enet.cpp
modules/dnn/samples/torch_enet.cpp
+49
-66
dnn.cpp
modules/dnn/src/dnn.cpp
+3
-0
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+17
-0
torch_importer.cpp
modules/dnn/src/torch/torch_importer.cpp
+18
-0
cityscapes_semsegm_test_enet.py
modules/dnn/test/cityscapes_semsegm_test_enet.py
+142
-0
imagenet_cls_test_alexnet.py
modules/dnn/test/imagenet_cls_test_alexnet.py
+246
-0
imagenet_cls_test_googlenet.py
modules/dnn/test/imagenet_cls_test_googlenet.py
+43
-0
imagenet_cls_test_inception.py
modules/dnn/test/imagenet_cls_test_inception.py
+79
-0
pascal_semsegm_test_fcn.py
modules/dnn/test/pascal_semsegm_test_fcn.py
+225
-0
No files found.
modules/dnn/CMakeLists.txt
View file @
053303ab
...
@@ -9,7 +9,7 @@ endif()
...
@@ -9,7 +9,7 @@ endif()
set
(
the_description
"Deep neural network module. It allows to load models from different frameworks and to make forward pass"
)
set
(
the_description
"Deep neural network module. It allows to load models from different frameworks and to make forward pass"
)
ocv_add_module
(
dnn opencv_core opencv_imgproc
)
ocv_add_module
(
dnn opencv_core opencv_imgproc
WRAP python matlab
)
ocv_warnings_disable
(
CMAKE_CXX_FLAGS -Wno-shadow -Wno-parentheses -Wmaybe-uninitialized -Wsign-promo
ocv_warnings_disable
(
CMAKE_CXX_FLAGS -Wno-shadow -Wno-parentheses -Wmaybe-uninitialized -Wsign-promo
-Wmissing-declarations -Wmissing-prototypes
-Wmissing-declarations -Wmissing-prototypes
)
)
...
...
modules/dnn/include/opencv2/dnn/dnn.hpp
View file @
053303ab
...
@@ -304,6 +304,16 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
...
@@ -304,6 +304,16 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
*/
*/
CV_EXPORTS_W
Net
readNetFromCaffe
(
const
String
&
prototxt
,
const
String
&
caffeModel
=
String
());
CV_EXPORTS_W
Net
readNetFromCaffe
(
const
String
&
prototxt
,
const
String
&
caffeModel
=
String
());
/** @brief Reads a network model stored in Tensorflow model file.
* @details This is shortcut consisting from createTensorflowImporter and Net::populateNet calls.
*/
CV_EXPORTS_W
Net
readNetFromTensorflow
(
const
String
&
model
);
/** @brief Reads a network model stored in Torch model file.
* @details This is shortcut consisting from createTorchImporter and Net::populateNet calls.
*/
CV_EXPORTS_W
Net
readNetFromTorch
(
const
String
&
model
,
bool
isBinary
=
true
);
/** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
/** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
* @param model path to the .pb file with binary protobuf description of the network architecture.
* @param model path to the .pb file with binary protobuf description of the network architecture.
* @returns Pointer to the created importer, NULL in failure cases.
* @returns Pointer to the created importer, NULL in failure cases.
...
...
modules/dnn/misc/python/pyopencv_dnn.hpp
View file @
053303ab
...
@@ -26,4 +26,10 @@ bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
...
@@ -26,4 +26,10 @@ bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
return
false
;
return
false
;
}
}
template
<>
bool
pyopencv_to
(
PyObject
*
o
,
std
::
vector
<
Mat
>
&
blobs
,
const
char
*
name
)
//required for Layer::blobs RW
{
return
pyopencvVecConverter
<
Mat
>::
to
(
o
,
blobs
,
ArgInfo
(
name
,
false
));
}
#endif
#endif
modules/dnn/samples/enet-classes.txt
0 → 100644
View file @
053303ab
Unlabeled 0 0 0
Road 128 64 128
Sidewalk 244 35 232
Building 70 70 70
Wall 102 102 156
Fence 190 153 153
Pole 153 153 153
TrafficLight 250 170 30
TrafficSign 220 220 0
Vegetation 107 142 35
Terrain 152 251 152
Sky 70 130 180
Person 220 20 60
Rider 255 0 0
Car 0 0 142
Truck 0 0 70
Bus 0 60 100
Train 0 80 100
Motorcycle 0 0 230
Bicycle 119 11 32
\ No newline at end of file
modules/dnn/samples/tf_inception.cpp
View file @
053303ab
...
@@ -99,7 +99,7 @@ int main(int argc, char **argv)
...
@@ -99,7 +99,7 @@ int main(int argc, char **argv)
Mat
inputBlob
=
blobFromImage
(
img
);
//Convert Mat to image batch
Mat
inputBlob
=
blobFromImage
(
img
);
//Convert Mat to image batch
//! [Prepare blob]
//! [Prepare blob]
inputBlob
-=
117.0
;
//! [Set input blob]
//! [Set input blob]
net
.
setBlob
(
inBlobName
,
inputBlob
);
//set the network input
net
.
setBlob
(
inBlobName
,
inputBlob
);
//set the network input
//! [Set input blob]
//! [Set input blob]
...
...
modules/dnn/samples/torch_enet.cpp
View file @
053303ab
...
@@ -26,9 +26,9 @@ const String keys =
...
@@ -26,9 +26,9 @@ const String keys =
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
;
;
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
);
static
void
colorizeSegmentation
(
const
Mat
&
score
,
Mat
&
segm
,
static
void
colorizeSegmentation
(
const
Mat
&
score
,
Mat
&
segm
,
Mat
&
legend
,
vector
<
String
>
&
classNames
);
Mat
&
legend
,
vector
<
String
>
&
classNames
,
vector
<
Vec3b
>
&
colors
);
static
vector
<
Vec3b
>
readColors
(
const
String
&
filename
,
vector
<
String
>&
classNames
);
int
main
(
int
argc
,
char
**
argv
)
int
main
(
int
argc
,
char
**
argv
)
{
{
...
@@ -52,43 +52,21 @@ int main(int argc, char **argv)
...
@@ -52,43 +52,21 @@ int main(int argc, char **argv)
String
classNamesFile
=
parser
.
get
<
String
>
(
"c_names"
);
String
classNamesFile
=
parser
.
get
<
String
>
(
"c_names"
);
String
resultFile
=
parser
.
get
<
String
>
(
"result"
);
String
resultFile
=
parser
.
get
<
String
>
(
"result"
);
//! [Create the importer of TensorFlow model]
//! [Read model and initialize network]
Ptr
<
dnn
::
Importer
>
importer
;
dnn
::
Net
net
=
dnn
::
readNetFromTorch
(
modelFile
);
try
//Try to import TensorFlow AlexNet model
{
importer
=
dnn
::
createTorchImporter
(
modelFile
);
}
catch
(
const
cv
::
Exception
&
err
)
//Importer can throw errors, we will catch them
{
std
::
cerr
<<
err
.
msg
<<
std
::
endl
;
}
//! [Create the importer of Caffe model]
if
(
!
importer
)
{
std
::
cerr
<<
"Can't load network by using the mode file: "
<<
std
::
endl
;
std
::
cerr
<<
modelFile
<<
std
::
endl
;
exit
(
-
1
);
}
//! [Initialize network]
dnn
::
Net
net
;
importer
->
populateNet
(
net
);
importer
.
release
();
//We don't need importer anymore
//! [Initialize network]
//! [Prepare blob]
//! [Prepare blob]
Mat
img
=
imread
(
imageFile
,
1
);
Mat
img
=
imread
(
imageFile
),
input
;
if
(
img
.
empty
())
if
(
img
.
empty
())
{
{
std
::
cerr
<<
"Can't read image from the file: "
<<
imageFile
<<
std
::
endl
;
std
::
cerr
<<
"Can't read image from the file: "
<<
imageFile
<<
std
::
endl
;
exit
(
-
1
);
exit
(
-
1
);
}
}
Size
inputImgSize
(
512
,
512
);
Size
origSize
=
img
.
size
();
Size
inputImgSize
=
cv
::
Size
(
1024
,
512
);
if
(
inputImgSize
!=
img
.
size
()
)
if
(
inputImgSize
!=
origSize
)
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
resize
(
img
,
img
,
inputImgSize
);
//Resize image to input size
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
,
true
);
//Convert Mat to image batch
Mat
inputBlob
=
blobFromImage
(
img
,
1.
/
255
,
true
);
//Convert Mat to image batch
...
@@ -130,20 +108,18 @@ int main(int argc, char **argv)
...
@@ -130,20 +108,18 @@ int main(int argc, char **argv)
if
(
parser
.
has
(
"show"
))
if
(
parser
.
has
(
"show"
))
{
{
size_t
nclasses
=
result
.
size
[
1
];
std
::
vector
<
String
>
classNames
;
std
::
vector
<
String
>
classNames
;
vector
<
cv
::
Vec3b
>
colors
;
if
(
!
classNamesFile
.
empty
())
{
if
(
!
classNamesFile
.
empty
())
{
classNames
=
readClassNames
(
classNamesFile
.
c_str
());
colors
=
readColors
(
classNamesFile
,
classNames
);
if
(
classNames
.
size
()
>
nclasses
)
classNames
=
std
::
vector
<
String
>
(
classNames
.
begin
()
+
classNames
.
size
()
-
nclasses
,
classNames
.
end
());
}
}
Mat
segm
,
legend
;
Mat
segm
,
legend
;
colorizeSegmentation
(
result
,
segm
,
legend
,
classNames
);
colorizeSegmentation
(
result
,
segm
,
legend
,
classNames
,
colors
);
Mat
show
;
Mat
show
;
addWeighted
(
img
,
0.
2
,
segm
,
0.8
,
0.0
,
show
);
addWeighted
(
img
,
0.
1
,
segm
,
0.9
,
0.0
,
show
);
cv
::
resize
(
show
,
show
,
origSize
,
0
,
0
,
cv
::
INTER_NEAREST
);
imshow
(
"Result"
,
show
);
imshow
(
"Result"
,
show
);
if
(
classNames
.
size
())
if
(
classNames
.
size
())
imshow
(
"Legend"
,
legend
);
imshow
(
"Legend"
,
legend
);
...
@@ -153,44 +129,16 @@ int main(int argc, char **argv)
...
@@ -153,44 +129,16 @@ int main(int argc, char **argv)
return
0
;
return
0
;
}
//main
}
//main
static
void
colorizeSegmentation
(
const
Mat
&
score
,
Mat
&
segm
,
Mat
&
legend
,
vector
<
String
>
&
classNames
,
vector
<
Vec3b
>
&
colors
)
std
::
vector
<
String
>
readClassNames
(
const
char
*
filename
)
{
std
::
vector
<
String
>
classNames
;
std
::
ifstream
fp
(
filename
);
if
(
!
fp
.
is_open
())
{
std
::
cerr
<<
"File with classes labels not found: "
<<
filename
<<
std
::
endl
;
exit
(
-
1
);
}
std
::
string
name
;
while
(
!
fp
.
eof
())
{
std
::
getline
(
fp
,
name
);
if
(
name
.
length
())
classNames
.
push_back
(
name
);
}
fp
.
close
();
return
classNames
;
}
static
void
colorizeSegmentation
(
const
Mat
&
score
,
Mat
&
segm
,
Mat
&
legend
,
vector
<
String
>
&
classNames
)
{
{
const
int
rows
=
score
.
size
[
2
];
const
int
rows
=
score
.
size
[
2
];
const
int
cols
=
score
.
size
[
3
];
const
int
cols
=
score
.
size
[
3
];
const
int
chns
=
score
.
size
[
1
];
const
int
chns
=
score
.
size
[
1
];
vector
<
Vec3i
>
colors
;
RNG
rng
(
12345678
);
cv
::
Mat
maxCl
(
rows
,
cols
,
CV_8UC1
);
cv
::
Mat
maxCl
(
rows
,
cols
,
CV_8UC1
);
cv
::
Mat
maxVal
(
rows
,
cols
,
CV_32FC1
);
cv
::
Mat
maxVal
(
rows
,
cols
,
CV_32FC1
);
for
(
int
ch
=
0
;
ch
<
chns
;
ch
++
)
for
(
int
ch
=
0
;
ch
<
chns
;
ch
++
)
{
{
colors
.
push_back
(
Vec3i
(
rng
.
uniform
(
0
,
256
),
rng
.
uniform
(
0
,
256
),
rng
.
uniform
(
0
,
256
)));
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
for
(
int
row
=
0
;
row
<
rows
;
row
++
)
{
{
const
float
*
ptrScore
=
score
.
ptr
<
float
>
(
0
,
ch
,
row
);
const
float
*
ptrScore
=
score
.
ptr
<
float
>
(
0
,
ch
,
row
);
...
@@ -230,3 +178,38 @@ static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vecto
...
@@ -230,3 +178,38 @@ static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vecto
}
}
}
}
}
}
static
vector
<
Vec3b
>
readColors
(
const
String
&
filename
,
vector
<
String
>&
classNames
)
{
vector
<
cv
::
Vec3b
>
colors
;
classNames
.
clear
();
ifstream
fp
(
filename
.
c_str
());
if
(
!
fp
.
is_open
())
{
cerr
<<
"File with colors not found: "
<<
filename
<<
endl
;
exit
(
-
1
);
}
string
line
;
while
(
!
fp
.
eof
())
{
getline
(
fp
,
line
);
if
(
line
.
length
())
{
stringstream
ss
(
line
);
string
name
;
ss
>>
name
;
int
temp
;
cv
::
Vec3b
color
;
ss
>>
temp
;
color
[
0
]
=
temp
;
ss
>>
temp
;
color
[
1
]
=
temp
;
ss
>>
temp
;
color
[
2
]
=
temp
;
classNames
.
push_back
(
name
);
colors
.
push_back
(
color
);
}
}
fp
.
close
();
return
colors
;
}
modules/dnn/src/dnn.cpp
View file @
053303ab
...
@@ -604,7 +604,10 @@ void Net::setBlob(String outputName, const Mat &blob_)
...
@@ -604,7 +604,10 @@ void Net::setBlob(String outputName, const Mat &blob_)
LayerData
&
ld
=
impl
->
layers
[
pin
.
lid
];
LayerData
&
ld
=
impl
->
layers
[
pin
.
lid
];
ld
.
outputBlobs
.
resize
(
std
::
max
(
pin
.
oid
+
1
,
(
int
)
ld
.
requiredOutputs
.
size
())
);
ld
.
outputBlobs
.
resize
(
std
::
max
(
pin
.
oid
+
1
,
(
int
)
ld
.
requiredOutputs
.
size
())
);
MatSize
prevShape
=
ld
.
outputBlobs
[
pin
.
oid
].
size
;
ld
.
outputBlobs
[
pin
.
oid
]
=
blob_
.
clone
();
ld
.
outputBlobs
[
pin
.
oid
]
=
blob_
.
clone
();
impl
->
netWasAllocated
=
prevShape
==
blob_
.
size
;
}
}
Mat
Net
::
getBlob
(
String
outputName
)
Mat
Net
::
getBlob
(
String
outputName
)
...
...
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
053303ab
...
@@ -736,6 +736,23 @@ void TFImporter::populateNet(Net dstNet)
...
@@ -736,6 +736,23 @@ void TFImporter::populateNet(Net dstNet)
}
// namespace
}
// namespace
Net
cv
::
dnn
::
readNetFromTensorflow
(
const
String
&
model
)
{
Ptr
<
Importer
>
importer
;
try
{
importer
=
createTensorflowImporter
(
model
);
}
catch
(...)
{
}
Net
net
;
if
(
importer
)
importer
->
populateNet
(
net
);
return
net
;
}
Ptr
<
Importer
>
cv
::
dnn
::
createTensorflowImporter
(
const
String
&
model
)
Ptr
<
Importer
>
cv
::
dnn
::
createTensorflowImporter
(
const
String
&
model
)
{
{
return
Ptr
<
Importer
>
(
new
TFImporter
(
model
.
c_str
()));
return
Ptr
<
Importer
>
(
new
TFImporter
(
model
.
c_str
()));
...
...
modules/dnn/src/torch/torch_importer.cpp
View file @
053303ab
...
@@ -970,6 +970,24 @@ Mat readTorchBlob(const String &filename, bool isBinary)
...
@@ -970,6 +970,24 @@ Mat readTorchBlob(const String &filename, bool isBinary)
return
importer
->
tensors
.
begin
()
->
second
;
return
importer
->
tensors
.
begin
()
->
second
;
}
}
Net
readNetFromTorch
(
const
String
&
model
,
bool
isBinary
)
{
Ptr
<
Importer
>
importer
;
try
{
importer
=
createTorchImporter
(
model
,
isBinary
);
}
catch
(...)
{
}
Net
net
;
if
(
importer
)
importer
->
populateNet
(
net
);
return
net
;
}
#else
#else
Ptr
<
Importer
>
createTorchImporter
(
const
String
&
filename
,
bool
isBinary
)
Ptr
<
Importer
>
createTorchImporter
(
const
String
&
filename
,
bool
isBinary
)
...
...
modules/dnn/test/cityscapes_semsegm_test_enet.py
0 → 100644
View file @
053303ab
import
numpy
as
np
import
sys
import
os
import
fnmatch
import
argparse
# sys.path.append('<path to opencv_build_dir/lib>')
sys
.
path
.
append
(
'/home/arrybn/build/opencv_w_contrib/lib'
)
try
:
import
cv2
as
cv
except
ImportError
:
raise
ImportError
(
'Can
\'
t find opencv. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir'
)
try
:
import
torch
except
ImportError
:
raise
ImportError
(
'Can
\'
t find pytorch. Please intall it by following instructions on the official site'
)
from
torch.utils.serialization
import
load_lua
from
pascal_semsegm_test_fcn
import
eval_segm_result
,
get_conf_mat
,
get_metrics
,
DatasetImageFetch
,
SemSegmEvaluation
from
imagenet_cls_test_alexnet
import
Framework
,
DnnCaffeModel
class
NormalizePreproc
:
def
__init__
(
self
):
pass
@staticmethod
def
process
(
img
):
image_data
=
np
.
array
(
img
)
.
transpose
(
2
,
0
,
1
)
.
astype
(
np
.
float32
)
image_data
=
np
.
expand_dims
(
image_data
,
0
)
image_data
/=
255.0
return
image_data
class
CityscapesDataFetch
(
DatasetImageFetch
):
img_dir
=
''
segm_dir
=
''
segm_files
=
[]
colors
=
[]
i
=
0
def
__init__
(
self
,
img_dir
,
segm_dir
,
preproc
):
self
.
img_dir
=
img_dir
self
.
segm_dir
=
segm_dir
self
.
segm_files
=
sorted
([
img
for
img
in
self
.
locate
(
'*_color.png'
,
segm_dir
)])
self
.
colors
=
self
.
get_colors
()
self
.
data_prepoc
=
preproc
self
.
i
=
0
@staticmethod
def
get_colors
():
result
=
[]
colors_list
=
(
(
0
,
0
,
0
),
(
128
,
64
,
128
),
(
244
,
35
,
232
),
(
70
,
70
,
70
),
(
102
,
102
,
156
),
(
190
,
153
,
153
),
(
153
,
153
,
153
),
(
250
,
170
,
30
),
(
220
,
220
,
0
),
(
107
,
142
,
35
),
(
152
,
251
,
152
),
(
70
,
130
,
180
),
(
220
,
20
,
60
),
(
255
,
0
,
0
),
(
0
,
0
,
142
),
(
0
,
0
,
70
),
(
0
,
60
,
100
),
(
0
,
80
,
100
),
(
0
,
0
,
230
),
(
119
,
11
,
32
))
for
c
in
colors_list
:
result
.
append
(
DatasetImageFetch
.
pix_to_c
(
c
))
return
result
def
__iter__
(
self
):
return
self
def
next
(
self
):
if
self
.
i
<
len
(
self
.
segm_files
):
segm_file
=
self
.
segm_files
[
self
.
i
]
segm
=
cv
.
imread
(
segm_file
,
cv
.
IMREAD_COLOR
)[:,
:,
::
-
1
]
segm
=
cv
.
resize
(
segm
,
(
1024
,
512
),
interpolation
=
cv
.
INTER_NEAREST
)
img_file
=
self
.
rreplace
(
self
.
img_dir
+
segm_file
[
len
(
self
.
segm_dir
):],
'gtFine_color'
,
'leftImg8bit'
)
assert
os
.
path
.
exists
(
img_file
)
img
=
cv
.
imread
(
img_file
,
cv
.
IMREAD_COLOR
)[:,
:,
::
-
1
]
img
=
cv
.
resize
(
img
,
(
1024
,
512
))
self
.
i
+=
1
gt
=
self
.
color_to_gt
(
segm
,
self
.
colors
)
img
=
self
.
data_prepoc
.
process
(
img
)
return
img
,
gt
else
:
self
.
i
=
0
raise
StopIteration
def
get_num_classes
(
self
):
return
len
(
self
.
colors
)
@staticmethod
def
locate
(
pattern
,
root_path
):
for
path
,
dirs
,
files
in
os
.
walk
(
os
.
path
.
abspath
(
root_path
)):
for
filename
in
fnmatch
.
filter
(
files
,
pattern
):
yield
os
.
path
.
join
(
path
,
filename
)
@staticmethod
def
rreplace
(
s
,
old
,
new
,
occurrence
=
1
):
li
=
s
.
rsplit
(
old
,
occurrence
)
return
new
.
join
(
li
)
class
TorchModel
(
Framework
):
net
=
object
def
__init__
(
self
,
model_file
):
self
.
net
=
load_lua
(
model_file
)
def
get_name
(
self
):
return
'Torch'
def
get_output
(
self
,
input_blob
):
tensor
=
torch
.
FloatTensor
(
input_blob
)
out
=
self
.
net
.
forward
(
tensor
)
.
numpy
()
return
out
class
DnnTorchModel
(
DnnCaffeModel
):
net
=
cv
.
dnn
.
Net
()
def
__init__
(
self
,
model_file
):
self
.
net
=
cv
.
dnn
.
readNetFromTorch
(
model_file
)
def
get_output
(
self
,
input_blob
):
self
.
net
.
setBlob
(
""
,
input_blob
)
self
.
net
.
forward
()
return
self
.
net
.
getBlob
(
self
.
net
.
getLayerNames
()[
-
1
])
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--imgs_dir"
,
help
=
"path to Cityscapes validation images dir, imgsfine/leftImg8bit/val"
)
parser
.
add_argument
(
"--segm_dir"
,
help
=
"path to Cityscapes dir with segmentation, gtfine/gtFine/val"
)
parser
.
add_argument
(
"--model"
,
help
=
"path to torch model, download it here: "
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa"
)
parser
.
add_argument
(
"--log"
,
help
=
"path to logging file"
)
args
=
parser
.
parse_args
()
prep
=
NormalizePreproc
()
df
=
CityscapesDataFetch
(
args
.
imgs_dir
,
args
.
segm_dir
,
prep
)
fw
=
[
TorchModel
(
args
.
model
),
DnnTorchModel
(
args
.
model
)]
segm_eval
=
SemSegmEvaluation
(
args
.
log
)
segm_eval
.
process
(
fw
,
df
)
modules/dnn/test/imagenet_cls_test_alexnet.py
0 → 100644
View file @
053303ab
from
abc
import
ABCMeta
,
abstractmethod
import
numpy
as
np
import
sys
import
os
import
argparse
import
time
# sys.path.append('<path to git/caffe/python dir>')
sys
.
path
.
append
(
'/home/arrybn/git/caffe/python'
)
try
:
import
caffe
except
ImportError
:
raise
ImportError
(
'Can
\'
t find caffe. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to git/caffe/python dir'
)
# sys.path.append('<path to opencv_build_dir/lib>')
sys
.
path
.
append
(
'/home/arrybn/build/opencv_w_contrib/lib'
)
try
:
import
cv2
as
cv
except
ImportError
:
raise
ImportError
(
'Can
\'
t find opencv. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir'
)
class
DataFetch
(
object
):
imgs_dir
=
''
frame_size
=
0
bgr_to_rgb
=
False
__metaclass__
=
ABCMeta
@abstractmethod
def
preprocess
(
self
,
img
):
pass
def
get_batch
(
self
,
imgs_names
):
assert
type
(
imgs_names
)
is
list
batch
=
np
.
zeros
((
len
(
imgs_names
),
3
,
self
.
frame_size
,
self
.
frame_size
))
.
astype
(
np
.
float32
)
for
i
in
range
(
len
(
imgs_names
)):
img_name
=
imgs_names
[
i
]
img_file
=
self
.
imgs_dir
+
img_name
assert
os
.
path
.
exists
(
img_file
)
img
=
cv
.
imread
(
img_file
,
cv
.
IMREAD_COLOR
)
min_dim
=
min
(
img
.
shape
[
-
3
],
img
.
shape
[
-
2
])
resize_ratio
=
self
.
frame_size
/
float
(
min_dim
)
img
=
cv
.
resize
(
img
,
(
0
,
0
),
fx
=
resize_ratio
,
fy
=
resize_ratio
)
cols
=
img
.
shape
[
1
]
rows
=
img
.
shape
[
0
]
y1
=
(
rows
-
self
.
frame_size
)
/
2
y2
=
y1
+
self
.
frame_size
x1
=
(
cols
-
self
.
frame_size
)
/
2
x2
=
x1
+
self
.
frame_size
img
=
img
[
y1
:
y2
,
x1
:
x2
]
if
self
.
bgr_to_rgb
:
img
=
img
[
...
,
::
-
1
]
image_data
=
img
[:,
:,
0
:
3
]
.
transpose
(
2
,
0
,
1
)
batch
[
i
]
=
self
.
preprocess
(
image_data
)
return
batch
class
MeanBlobFetch
(
DataFetch
):
mean_blob
=
np
.
ndarray
(())
def
__init__
(
self
,
frame_size
,
mean_blob_path
,
imgs_dir
):
self
.
imgs_dir
=
imgs_dir
self
.
frame_size
=
frame_size
blob
=
caffe
.
proto
.
caffe_pb2
.
BlobProto
()
data
=
open
(
mean_blob_path
,
'rb'
)
.
read
()
blob
.
ParseFromString
(
data
)
self
.
mean_blob
=
np
.
array
(
caffe
.
io
.
blobproto_to_array
(
blob
))
start
=
(
self
.
mean_blob
.
shape
[
2
]
-
self
.
frame_size
)
/
2
stop
=
start
+
self
.
frame_size
self
.
mean_blob
=
self
.
mean_blob
[:,
:,
start
:
stop
,
start
:
stop
][
0
]
def
preprocess
(
self
,
img
):
return
img
-
self
.
mean_blob
class
MeanChannelsFetch
(
MeanBlobFetch
):
def
__init__
(
self
,
frame_size
,
imgs_dir
):
self
.
imgs_dir
=
imgs_dir
self
.
frame_size
=
frame_size
self
.
mean_blob
=
np
.
ones
((
3
,
self
.
frame_size
,
self
.
frame_size
))
.
astype
(
np
.
float32
)
self
.
mean_blob
[
0
]
*=
104
self
.
mean_blob
[
1
]
*=
117
self
.
mean_blob
[
2
]
*=
123
class
MeanValueFetch
(
MeanBlobFetch
):
def
__init__
(
self
,
frame_size
,
imgs_dir
,
bgr_to_rgb
):
self
.
imgs_dir
=
imgs_dir
self
.
frame_size
=
frame_size
self
.
mean_blob
=
np
.
ones
((
3
,
self
.
frame_size
,
self
.
frame_size
))
.
astype
(
np
.
float32
)
self
.
mean_blob
*=
117
self
.
bgr_to_rgb
=
bgr_to_rgb
def
get_correct_answers
(
img_list
,
img_classes
,
net_output_blob
):
correct_answers
=
0
for
i
in
range
(
len
(
img_list
)):
indexes
=
np
.
argsort
(
net_output_blob
[
i
])[
-
5
:]
correct_index
=
img_classes
[
img_list
[
i
]]
if
correct_index
in
indexes
:
correct_answers
+=
1
return
correct_answers
class
Framework
(
object
):
in_blob_name
=
''
out_blob_name
=
''
__metaclass__
=
ABCMeta
@abstractmethod
def
get_name
(
self
):
pass
@abstractmethod
def
get_output
(
self
,
input_blob
):
pass
class
CaffeModel
(
Framework
):
net
=
caffe
.
Net
need_reshape
=
False
def
__init__
(
self
,
prototxt
,
caffemodel
,
in_blob_name
,
out_blob_name
,
need_reshape
=
False
):
caffe
.
set_mode_cpu
()
self
.
net
=
caffe
.
Net
(
prototxt
,
caffemodel
,
caffe
.
TEST
)
self
.
in_blob_name
=
in_blob_name
self
.
out_blob_name
=
out_blob_name
self
.
need_reshape
=
need_reshape
def
get_name
(
self
):
return
'Caffe'
def
get_output
(
self
,
input_blob
):
if
self
.
need_reshape
:
self
.
net
.
blobs
[
self
.
in_blob_name
]
.
reshape
(
*
input_blob
.
shape
)
return
self
.
net
.
forward_all
(
**
{
self
.
in_blob_name
:
input_blob
})[
self
.
out_blob_name
]
class
DnnCaffeModel
(
Framework
):
net
=
object
def
__init__
(
self
,
prototxt
,
caffemodel
,
in_blob_name
,
out_blob_name
):
self
.
net
=
cv
.
dnn
.
readNetFromCaffe
(
prototxt
,
caffemodel
)
self
.
in_blob_name
=
in_blob_name
self
.
out_blob_name
=
out_blob_name
def
get_name
(
self
):
return
'DNN'
def
get_output
(
self
,
input_blob
):
self
.
net
.
setBlob
(
self
.
in_blob_name
,
input_blob
)
self
.
net
.
forward
()
return
self
.
net
.
getBlob
(
self
.
out_blob_name
)
class
ClsAccEvaluation
:
log
=
file
img_classes
=
{}
batch_size
=
0
def
__init__
(
self
,
log_path
,
img_classes_file
,
batch_size
):
self
.
log
=
open
(
log_path
,
'w'
)
self
.
img_classes
=
self
.
read_classes
(
img_classes_file
)
self
.
batch_size
=
batch_size
@staticmethod
def
read_classes
(
img_classes_file
):
result
=
{}
with
open
(
img_classes_file
)
as
file
:
for
l
in
file
.
readlines
():
result
[
l
.
split
()[
0
]]
=
int
(
l
.
split
()[
1
])
return
result
def
process
(
self
,
frameworks
,
data_fetcher
):
sorted_imgs_names
=
sorted
(
self
.
img_classes
.
keys
())
correct_answers
=
[
0
]
*
len
(
frameworks
)
samples_handled
=
0
blobs_l1_diff
=
[
0
]
*
len
(
frameworks
)
blobs_l1_diff_count
=
[
0
]
*
len
(
frameworks
)
blobs_l_inf_diff
=
[
sys
.
float_info
.
min
]
*
len
(
frameworks
)
inference_time
=
[
0.0
]
*
len
(
frameworks
)
for
x
in
xrange
(
0
,
len
(
sorted_imgs_names
),
self
.
batch_size
):
sublist
=
sorted_imgs_names
[
x
:
x
+
self
.
batch_size
]
batch
=
data_fetcher
.
get_batch
(
sublist
)
samples_handled
+=
len
(
sublist
)
frameworks_out
=
[]
fw_accuracy
=
[]
for
i
in
range
(
len
(
frameworks
)):
start
=
time
.
time
()
out
=
frameworks
[
i
]
.
get_output
(
batch
)
end
=
time
.
time
()
correct_answers
[
i
]
+=
get_correct_answers
(
sublist
,
self
.
img_classes
,
out
)
fw_accuracy
.
append
(
100
*
correct_answers
[
i
]
/
float
(
samples_handled
))
frameworks_out
.
append
(
out
)
inference_time
[
i
]
+=
end
-
start
print
>>
self
.
log
,
samples_handled
,
'Accuracy for'
,
frameworks
[
i
]
.
get_name
()
+
':'
,
fw_accuracy
[
i
]
print
>>
self
.
log
,
"Inference time, ms "
,
\
frameworks
[
i
]
.
get_name
(),
inference_time
[
i
]
/
samples_handled
*
1000
for
i
in
range
(
1
,
len
(
frameworks
)):
log_str
=
frameworks
[
0
]
.
get_name
()
+
" vs "
+
frameworks
[
i
]
.
get_name
()
+
':'
diff
=
np
.
abs
(
frameworks_out
[
0
]
-
frameworks_out
[
i
])
l1_diff
=
np
.
sum
(
diff
)
/
diff
.
size
print
>>
self
.
log
,
samples_handled
,
"L1 difference"
,
log_str
,
l1_diff
blobs_l1_diff
[
i
]
+=
l1_diff
blobs_l1_diff_count
[
i
]
+=
1
if
np
.
max
(
diff
)
>
blobs_l_inf_diff
[
i
]:
blobs_l_inf_diff
[
i
]
=
np
.
max
(
diff
)
print
>>
self
.
log
,
samples_handled
,
"L_INF difference"
,
log_str
,
blobs_l_inf_diff
[
i
]
self
.
log
.
flush
()
for
i
in
range
(
1
,
len
(
blobs_l1_diff
)):
log_str
=
frameworks
[
0
]
.
get_name
()
+
" vs "
+
frameworks
[
i
]
.
get_name
()
+
':'
print
>>
self
.
log
,
'Final l1 diff'
,
log_str
,
blobs_l1_diff
[
i
]
/
blobs_l1_diff_count
[
i
]
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--imgs_dir"
,
help
=
"path to ImageNet validation subset images dir, ILSVRC2012_img_val dir"
)
parser
.
add_argument
(
"--img_cls_file"
,
help
=
"path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz"
)
parser
.
add_argument
(
"--prototxt"
,
help
=
"path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt"
)
parser
.
add_argument
(
"--caffemodel"
,
help
=
"path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel"
)
parser
.
add_argument
(
"--log"
,
help
=
"path to logging file"
)
parser
.
add_argument
(
"--mean"
,
help
=
"path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
"this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz"
)
parser
.
add_argument
(
"--batch_size"
,
help
=
"size of images in batch"
,
default
=
1000
)
parser
.
add_argument
(
"--frame_size"
,
help
=
"size of input image"
,
default
=
227
)
parser
.
add_argument
(
"--in_blob"
,
help
=
"name for input blob"
,
default
=
'data'
)
parser
.
add_argument
(
"--out_blob"
,
help
=
"name for output blob"
,
default
=
'prob'
)
args
=
parser
.
parse_args
()
data_fetcher
=
MeanBlobFetch
(
args
.
frame_size
,
args
.
mean
,
args
.
imgs_dir
)
frameworks
=
[
CaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
args
.
in_blob
,
args
.
out_blob
),
DnnCaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
''
,
args
.
out_blob
)]
acc_eval
=
ClsAccEvaluation
(
args
.
log
,
args
.
img_cls_file
,
args
.
batch_size
)
acc_eval
.
process
(
frameworks
,
data_fetcher
)
modules/dnn/test/imagenet_cls_test_googlenet.py
0 → 100644
View file @
053303ab
import
numpy
as
np
import
sys
import
os
import
argparse
from
imagenet_cls_test_alexnet
import
MeanChannelsFetch
,
CaffeModel
,
DnnCaffeModel
,
ClsAccEvaluation
# sys.path.append('<path to git/caffe/python dir>')
sys
.
path
.
append
(
'/home/arrybn/git/caffe/python'
)
try
:
import
caffe
except
ImportError
:
raise
ImportError
(
'Can
\'
t find caffe. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to git/caffe/python dir'
)
# sys.path.append('<path to opencv_build_dir/lib>')
sys
.
path
.
append
(
'/home/arrybn/build/opencv_w_contrib/lib'
)
try
:
import
cv2
as
cv
except
ImportError
:
raise
ImportError
(
'Can
\'
t find opencv. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir'
)
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--imgs_dir"
,
help
=
"path to ImageNet validation subset images dir, ILSVRC2012_img_val dir"
)
parser
.
add_argument
(
"--img_cls_file"
,
help
=
"path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz"
)
parser
.
add_argument
(
"--prototxt"
,
help
=
"path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt"
)
parser
.
add_argument
(
"--caffemodel"
,
help
=
"path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel"
)
parser
.
add_argument
(
"--log"
,
help
=
"path to logging file"
)
parser
.
add_argument
(
"--batch_size"
,
help
=
"size of images in batch"
,
default
=
500
,
type
=
int
)
parser
.
add_argument
(
"--frame_size"
,
help
=
"size of input image"
,
default
=
224
,
type
=
int
)
parser
.
add_argument
(
"--in_blob"
,
help
=
"name for input blob"
,
default
=
'data'
)
parser
.
add_argument
(
"--out_blob"
,
help
=
"name for output blob"
,
default
=
'prob'
)
args
=
parser
.
parse_args
()
data_fetcher
=
MeanChannelsFetch
(
args
.
frame_size
,
args
.
imgs_dir
)
frameworks
=
[
CaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
args
.
in_blob
,
args
.
out_blob
),
DnnCaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
''
,
args
.
out_blob
)]
acc_eval
=
ClsAccEvaluation
(
args
.
log
,
args
.
img_cls_file
,
args
.
batch_size
)
acc_eval
.
process
(
frameworks
,
data_fetcher
)
modules/dnn/test/imagenet_cls_test_inception.py
0 → 100644
View file @
053303ab
import
numpy
as
np
import
sys
import
os
import
argparse
import
tensorflow
as
tf
from
tensorflow.python.platform
import
gfile
from
imagenet_cls_test_alexnet
import
MeanValueFetch
,
DnnCaffeModel
,
Framework
,
ClsAccEvaluation
# sys.path.append('<path to opencv_build_dir/lib>')
sys
.
path
.
append
(
'/home/arrybn/build/opencv_w_contrib/lib'
)
try
:
import
cv2
as
cv
except
ImportError
:
raise
ImportError
(
'Can
\'
t find opencv. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir'
)
# If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable
# before runnigng the script:
# LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so
class
TensorflowModel
(
Framework
):
sess
=
tf
.
Session
output
=
tf
.
Graph
def
__init__
(
self
,
model_file
,
in_blob_name
,
out_blob_name
):
self
.
in_blob_name
=
in_blob_name
self
.
sess
=
tf
.
Session
()
with
gfile
.
FastGFile
(
model_file
,
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
self
.
sess
.
graph
.
as_default
()
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
self
.
output
=
self
.
sess
.
graph
.
get_tensor_by_name
(
out_blob_name
+
":0"
)
def
get_name
(
self
):
return
'Tensorflow'
def
get_output
(
self
,
input_blob
):
assert
len
(
input_blob
.
shape
)
==
4
batch_tf
=
input_blob
.
transpose
(
0
,
2
,
3
,
1
)
out
=
self
.
sess
.
run
(
self
.
output
,
{
self
.
in_blob_name
+
':0'
:
batch_tf
})
out
=
out
[
...
,
1
:
1001
]
return
out
class
DnnTfInceptionModel
(
DnnCaffeModel
):
net
=
cv
.
dnn
.
Net
()
def
__init__
(
self
,
model_file
,
in_blob_name
,
out_blob_name
):
self
.
net
=
cv
.
dnn
.
readNetFromTensorflow
(
model_file
)
self
.
in_blob_name
=
in_blob_name
self
.
out_blob_name
=
out_blob_name
def
get_output
(
self
,
input_blob
):
return
super
(
DnnTfInceptionModel
,
self
)
.
get_output
(
input_blob
)[
...
,
1
:
1001
]
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--imgs_dir"
,
help
=
"path to ImageNet validation subset images dir, ILSVRC2012_img_val dir"
)
parser
.
add_argument
(
"--img_cls_file"
,
help
=
"path to file with classes ids for images, download it here:"
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt"
)
parser
.
add_argument
(
"--model"
,
help
=
"path to tensorflow model, download it here:"
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip"
)
parser
.
add_argument
(
"--log"
,
help
=
"path to logging file"
)
parser
.
add_argument
(
"--batch_size"
,
help
=
"size of images in batch"
,
default
=
1
)
parser
.
add_argument
(
"--frame_size"
,
help
=
"size of input image"
,
default
=
224
)
parser
.
add_argument
(
"--in_blob"
,
help
=
"name for input blob"
,
default
=
'input'
)
parser
.
add_argument
(
"--out_blob"
,
help
=
"name for output blob"
,
default
=
'softmax2'
)
args
=
parser
.
parse_args
()
data_fetcher
=
MeanValueFetch
(
args
.
frame_size
,
args
.
imgs_dir
,
True
)
frameworks
=
[
TensorflowModel
(
args
.
model
,
args
.
in_blob
,
args
.
out_blob
),
DnnTfInceptionModel
(
args
.
model
,
''
,
args
.
out_blob
)]
acc_eval
=
ClsAccEvaluation
(
args
.
log
,
args
.
img_cls_file
,
args
.
batch_size
)
acc_eval
.
process
(
frameworks
,
data_fetcher
)
modules/dnn/test/pascal_semsegm_test_fcn.py
0 → 100644
View file @
053303ab
from
abc
import
ABCMeta
,
abstractmethod
import
numpy
as
np
import
sys
import
argparse
import
time
from
imagenet_cls_test_alexnet
import
CaffeModel
,
DnnCaffeModel
sys
.
path
.
append
(
'/home/arrybn/build/opencv_w_contrib/lib'
)
try
:
import
cv2
as
cv
except
ImportError
:
raise
ImportError
(
'Can
\'
t find opencv. If you
\'
ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir'
)
def
get_metrics
(
conf_mat
):
pix_accuracy
=
np
.
trace
(
conf_mat
)
/
np
.
sum
(
conf_mat
)
t
=
np
.
sum
(
conf_mat
,
1
)
num_cl
=
np
.
count_nonzero
(
t
)
assert
num_cl
mean_accuracy
=
np
.
sum
(
np
.
nan_to_num
(
np
.
divide
(
np
.
diagonal
(
conf_mat
),
t
)))
/
num_cl
col_sum
=
np
.
sum
(
conf_mat
,
0
)
mean_iou
=
np
.
sum
(
np
.
nan_to_num
(
np
.
divide
(
np
.
diagonal
(
conf_mat
),
(
t
+
col_sum
-
np
.
diagonal
(
conf_mat
)))))
/
num_cl
return
pix_accuracy
,
mean_accuracy
,
mean_iou
def
eval_segm_result
(
net_out
):
assert
type
(
net_out
)
is
np
.
ndarray
assert
len
(
net_out
.
shape
)
==
4
channels_dim
=
1
y_dim
=
channels_dim
+
1
x_dim
=
y_dim
+
1
res
=
np
.
zeros
(
net_out
.
shape
)
.
astype
(
np
.
int
)
for
i
in
range
(
net_out
.
shape
[
y_dim
]):
for
j
in
range
(
net_out
.
shape
[
x_dim
]):
max_ch
=
np
.
argmax
(
net_out
[
...
,
i
,
j
])
res
[
0
,
max_ch
,
i
,
j
]
=
1
return
res
def
get_conf_mat
(
gt
,
prob
):
assert
type
(
gt
)
is
np
.
ndarray
assert
type
(
prob
)
is
np
.
ndarray
conf_mat
=
np
.
zeros
((
gt
.
shape
[
0
],
gt
.
shape
[
0
]))
for
ch_gt
in
range
(
conf_mat
.
shape
[
0
]):
gt_channel
=
gt
[
ch_gt
,
...
]
for
ch_pr
in
range
(
conf_mat
.
shape
[
1
]):
prob_channel
=
prob
[
ch_pr
,
...
]
conf_mat
[
ch_gt
][
ch_pr
]
=
np
.
count_nonzero
(
np
.
multiply
(
gt_channel
,
prob_channel
))
return
conf_mat
class
MeanChannelsPreproc
:
def
__init__
(
self
):
pass
@staticmethod
def
process
(
img
):
image_data
=
np
.
array
(
img
)
.
transpose
(
2
,
0
,
1
)
.
astype
(
np
.
float32
)
mean
=
np
.
ones
(
image_data
.
shape
)
mean
[
0
]
*=
104
mean
[
1
]
*=
117
mean
[
2
]
*=
123
image_data
-=
mean
image_data
=
np
.
expand_dims
(
image_data
,
0
)
return
image_data
class
DatasetImageFetch
(
object
):
__metaclass__
=
ABCMeta
data_prepoc
=
object
@abstractmethod
def
__iter__
(
self
):
pass
@abstractmethod
def
next
(
self
):
pass
@staticmethod
def
pix_to_c
(
pix
):
return
pix
[
0
]
*
256
*
256
+
pix
[
1
]
*
256
+
pix
[
2
]
@staticmethod
def
color_to_gt
(
color_img
,
colors
):
num_classes
=
len
(
colors
)
gt
=
np
.
zeros
((
num_classes
,
color_img
.
shape
[
0
],
color_img
.
shape
[
1
]))
.
astype
(
np
.
int
)
for
img_y
in
range
(
color_img
.
shape
[
0
]):
for
img_x
in
range
(
color_img
.
shape
[
1
]):
c
=
DatasetImageFetch
.
pix_to_c
(
color_img
[
img_y
][
img_x
])
if
c
in
colors
:
cls
=
colors
.
index
(
c
)
gt
[
cls
][
img_y
][
img_x
]
=
1
return
gt
class
PASCALDataFetch
(
DatasetImageFetch
):
img_dir
=
''
segm_dir
=
''
names
=
[]
colors
=
[]
i
=
0
def
__init__
(
self
,
img_dir
,
segm_dir
,
names_file
,
segm_cls_colors_file
,
preproc
):
self
.
img_dir
=
img_dir
self
.
segm_dir
=
segm_dir
self
.
colors
=
self
.
read_colors
(
segm_cls_colors_file
)
self
.
data_prepoc
=
preproc
self
.
i
=
0
with
open
(
names_file
)
as
f
:
for
l
in
f
.
readlines
():
self
.
names
.
append
(
l
.
rstrip
())
@staticmethod
def
read_colors
(
img_classes_file
):
result
=
[]
with
open
(
img_classes_file
)
as
f
:
for
l
in
f
.
readlines
():
color
=
np
.
array
(
map
(
int
,
l
.
split
()[
1
:]))
result
.
append
(
DatasetImageFetch
.
pix_to_c
(
color
))
return
result
def
__iter__
(
self
):
return
self
def
next
(
self
):
if
self
.
i
<
len
(
self
.
names
):
name
=
self
.
names
[
self
.
i
]
self
.
i
+=
1
segm_file
=
self
.
segm_dir
+
name
+
".png"
img_file
=
self
.
img_dir
+
name
+
".jpg"
gt
=
self
.
color_to_gt
(
cv
.
imread
(
segm_file
,
cv
.
IMREAD_COLOR
)[:,
:,
::
-
1
],
self
.
colors
)
img
=
self
.
data_prepoc
.
process
(
cv
.
imread
(
img_file
,
cv
.
IMREAD_COLOR
)[:,
:,
::
-
1
])
return
img
,
gt
else
:
self
.
i
=
0
raise
StopIteration
def
get_num_classes
(
self
):
return
len
(
self
.
colors
)
class
SemSegmEvaluation
:
log
=
file
def
__init__
(
self
,
log_path
,):
self
.
log
=
open
(
log_path
,
'w'
)
def
process
(
self
,
frameworks
,
data_fetcher
):
samples_handled
=
0
conf_mats
=
[
np
.
zeros
((
data_fetcher
.
get_num_classes
(),
data_fetcher
.
get_num_classes
()))
for
i
in
range
(
len
(
frameworks
))]
blobs_l1_diff
=
[
0
]
*
len
(
frameworks
)
blobs_l1_diff_count
=
[
0
]
*
len
(
frameworks
)
blobs_l_inf_diff
=
[
sys
.
float_info
.
min
]
*
len
(
frameworks
)
inference_time
=
[
0.0
]
*
len
(
frameworks
)
for
in_blob
,
gt
in
data_fetcher
:
frameworks_out
=
[]
samples_handled
+=
1
for
i
in
range
(
len
(
frameworks
)):
start
=
time
.
time
()
out
=
frameworks
[
i
]
.
get_output
(
in_blob
)
end
=
time
.
time
()
segm
=
eval_segm_result
(
out
)
conf_mats
[
i
]
+=
get_conf_mat
(
gt
,
segm
[
0
])
frameworks_out
.
append
(
out
)
inference_time
[
i
]
+=
end
-
start
pix_acc
,
mean_acc
,
miou
=
get_metrics
(
conf_mats
[
i
])
name
=
frameworks
[
i
]
.
get_name
()
print
>>
self
.
log
,
samples_handled
,
'Pixel accuracy,
%
s:'
%
name
,
100
*
pix_acc
print
>>
self
.
log
,
samples_handled
,
'Mean accuracy,
%
s:'
%
name
,
100
*
mean_acc
print
>>
self
.
log
,
samples_handled
,
'Mean IOU,
%
s:'
%
name
,
100
*
miou
print
>>
self
.
log
,
"Inference time, ms "
,
\
frameworks
[
i
]
.
get_name
(),
inference_time
[
i
]
/
samples_handled
*
1000
for
i
in
range
(
1
,
len
(
frameworks
)):
log_str
=
frameworks
[
0
]
.
get_name
()
+
" vs "
+
frameworks
[
i
]
.
get_name
()
+
':'
diff
=
np
.
abs
(
frameworks_out
[
0
]
-
frameworks_out
[
i
])
l1_diff
=
np
.
sum
(
diff
)
/
diff
.
size
print
>>
self
.
log
,
samples_handled
,
"L1 difference"
,
log_str
,
l1_diff
blobs_l1_diff
[
i
]
+=
l1_diff
blobs_l1_diff_count
[
i
]
+=
1
if
np
.
max
(
diff
)
>
blobs_l_inf_diff
[
i
]:
blobs_l_inf_diff
[
i
]
=
np
.
max
(
diff
)
print
>>
self
.
log
,
samples_handled
,
"L_INF difference"
,
log_str
,
blobs_l_inf_diff
[
i
]
self
.
log
.
flush
()
for
i
in
range
(
1
,
len
(
blobs_l1_diff
)):
log_str
=
frameworks
[
0
]
.
get_name
()
+
" vs "
+
frameworks
[
i
]
.
get_name
()
+
':'
print
>>
self
.
log
,
'Final l1 diff'
,
log_str
,
blobs_l1_diff
[
i
]
/
blobs_l1_diff_count
[
i
]
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--imgs_dir"
,
help
=
"path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages"
)
parser
.
add_argument
(
"--segm_dir"
,
help
=
"path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/"
)
parser
.
add_argument
(
"--val_names"
,
help
=
"path to file with validation set image names, download it here: "
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt"
)
parser
.
add_argument
(
"--cls_file"
,
help
=
"path to file with colors for classes, download it here: "
"https://github.com/opencv/opencv_contrib/blob/master/modules/dnn/samples/pascal-classes.txt"
)
parser
.
add_argument
(
"--prototxt"
,
help
=
"path to caffe prototxt, download it here: "
"https://github.com/opencv/opencv_contrib/blob/master/modules/dnn/samples/fcn8s-heavy-pascal.prototxt"
)
parser
.
add_argument
(
"--caffemodel"
,
help
=
"path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
)
parser
.
add_argument
(
"--log"
,
help
=
"path to logging file"
)
parser
.
add_argument
(
"--in_blob"
,
help
=
"name for input blob"
,
default
=
'data'
)
parser
.
add_argument
(
"--out_blob"
,
help
=
"name for output blob"
,
default
=
'score'
)
args
=
parser
.
parse_args
()
prep
=
MeanChannelsPreproc
()
df
=
PASCALDataFetch
(
args
.
imgs_dir
,
args
.
segm_dir
,
args
.
val_names
,
args
.
cls_file
,
prep
)
fw
=
[
CaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
args
.
in_blob
,
args
.
out_blob
,
True
),
DnnCaffeModel
(
args
.
prototxt
,
args
.
caffemodel
,
''
,
args
.
out_blob
)]
segm_eval
=
SemSegmEvaluation
(
args
.
log
)
segm_eval
.
process
(
fw
,
df
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment