Commit 053303ab authored by Aleksandr Rybnikov's avatar Aleksandr Rybnikov

Added python scripts to estimating accuracy

parent 3f5b4655
......@@ -9,7 +9,7 @@ endif()
set(the_description "Deep neural network module. It allows to load models from different frameworks and to make forward pass")
ocv_add_module(dnn opencv_core opencv_imgproc)
ocv_add_module(dnn opencv_core opencv_imgproc WRAP python matlab)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wno-shadow -Wno-parentheses -Wmaybe-uninitialized -Wsign-promo
-Wmissing-declarations -Wmissing-prototypes
)
......
......@@ -304,6 +304,16 @@ namespace dnn //! This namespace is used for dnn module functionlaity.
*/
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
/** @brief Reads a network model stored in Tensorflow model file.
* @details This is shortcut consisting from createTensorflowImporter and Net::populateNet calls.
*/
CV_EXPORTS_W Net readNetFromTensorflow(const String &model);
/** @brief Reads a network model stored in Torch model file.
* @details This is shortcut consisting from createTorchImporter and Net::populateNet calls.
*/
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true);
/** @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network.
* @param model path to the .pb file with binary protobuf description of the network architecture.
* @returns Pointer to the created importer, NULL in failure cases.
......
......@@ -26,4 +26,10 @@ bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
return false;
}
template<>
bool pyopencv_to(PyObject *o, std::vector<Mat> &blobs, const char *name) //required for Layer::blobs RW
{
return pyopencvVecConverter<Mat>::to(o, blobs, ArgInfo(name, false));
}
#endif
Unlabeled 0 0 0
Road 128 64 128
Sidewalk 244 35 232
Building 70 70 70
Wall 102 102 156
Fence 190 153 153
Pole 153 153 153
TrafficLight 250 170 30
TrafficSign 220 220 0
Vegetation 107 142 35
Terrain 152 251 152
Sky 70 130 180
Person 220 20 60
Rider 255 0 0
Car 0 0 142
Truck 0 0 70
Bus 0 60 100
Train 0 80 100
Motorcycle 0 0 230
Bicycle 119 11 32
\ No newline at end of file
......@@ -99,7 +99,7 @@ int main(int argc, char **argv)
Mat inputBlob = blobFromImage(img); //Convert Mat to image batch
//! [Prepare blob]
inputBlob -= 117.0;
//! [Set input blob]
net.setBlob(inBlobName, inputBlob); //set the network input
//! [Set input blob]
......
......@@ -26,9 +26,9 @@ const String keys =
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
;
std::vector<String> readClassNames(const char *filename);
static void colorizeSegmentation(const Mat &score, Mat &segm,
Mat &legend, vector<String> &classNames);
Mat &legend, vector<String> &classNames, vector<Vec3b> &colors);
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames);
int main(int argc, char **argv)
{
......@@ -52,43 +52,21 @@ int main(int argc, char **argv)
String classNamesFile = parser.get<String>("c_names");
String resultFile = parser.get<String>("result");
//! [Create the importer of TensorFlow model]
Ptr<dnn::Importer> importer;
try //Try to import TensorFlow AlexNet model
{
importer = dnn::createTorchImporter(modelFile);
}
catch (const cv::Exception &err) //Importer can throw errors, we will catch them
{
std::cerr << err.msg << std::endl;
}
//! [Create the importer of Caffe model]
if (!importer)
{
std::cerr << "Can't load network by using the mode file: " << std::endl;
std::cerr << modelFile << std::endl;
exit(-1);
}
//! [Initialize network]
dnn::Net net;
importer->populateNet(net);
importer.release(); //We don't need importer anymore
//! [Initialize network]
//! [Read model and initialize network]
dnn::Net net = dnn::readNetFromTorch(modelFile);
//! [Prepare blob]
Mat img = imread(imageFile, 1);
Mat img = imread(imageFile), input;
if (img.empty())
{
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
exit(-1);
}
Size inputImgSize(512, 512);
Size origSize = img.size();
Size inputImgSize = cv::Size(1024, 512);
if (inputImgSize != img.size())
if (inputImgSize != origSize)
resize(img, img, inputImgSize); //Resize image to input size
Mat inputBlob = blobFromImage(img, 1./255, true); //Convert Mat to image batch
......@@ -130,20 +108,18 @@ int main(int argc, char **argv)
if (parser.has("show"))
{
size_t nclasses = result.size[1];
std::vector<String> classNames;
vector<cv::Vec3b> colors;
if(!classNamesFile.empty()) {
classNames = readClassNames(classNamesFile.c_str());
if (classNames.size() > nclasses)
classNames = std::vector<String>(classNames.begin() + classNames.size() - nclasses,
classNames.end());
colors = readColors(classNamesFile, classNames);
}
Mat segm, legend;
colorizeSegmentation(result, segm, legend, classNames);
colorizeSegmentation(result, segm, legend, classNames, colors);
Mat show;
addWeighted(img, 0.2, segm, 0.8, 0.0, show);
addWeighted(img, 0.1, segm, 0.9, 0.0, show);
cv::resize(show, show, origSize, 0, 0, cv::INTER_NEAREST);
imshow("Result", show);
if(classNames.size())
imshow("Legend", legend);
......@@ -153,44 +129,16 @@ int main(int argc, char **argv)
return 0;
} //main
std::vector<String> readClassNames(const char *filename)
{
std::vector<String> classNames;
std::ifstream fp(filename);
if (!fp.is_open())
{
std::cerr << "File with classes labels not found: " << filename << std::endl;
exit(-1);
}
std::string name;
while (!fp.eof())
{
std::getline(fp, name);
if (name.length())
classNames.push_back(name);
}
fp.close();
return classNames;
}
static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames)
static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames, vector<Vec3b> &colors)
{
const int rows = score.size[2];
const int cols = score.size[3];
const int chns = score.size[1];
vector<Vec3i> colors;
RNG rng(12345678);
cv::Mat maxCl(rows, cols, CV_8UC1);
cv::Mat maxVal(rows, cols, CV_32FC1);
for (int ch = 0; ch < chns; ch++)
{
colors.push_back(Vec3i(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)));
for (int row = 0; row < rows; row++)
{
const float *ptrScore = score.ptr<float>(0, ch, row);
......@@ -230,3 +178,38 @@ static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vecto
}
}
}
static vector<Vec3b> readColors(const String &filename, vector<String>& classNames)
{
vector<cv::Vec3b> colors;
classNames.clear();
ifstream fp(filename.c_str());
if (!fp.is_open())
{
cerr << "File with colors not found: " << filename << endl;
exit(-1);
}
string line;
while (!fp.eof())
{
getline(fp, line);
if (line.length())
{
stringstream ss(line);
string name; ss >> name;
int temp;
cv::Vec3b color;
ss >> temp; color[0] = temp;
ss >> temp; color[1] = temp;
ss >> temp; color[2] = temp;
classNames.push_back(name);
colors.push_back(color);
}
}
fp.close();
return colors;
}
......@@ -604,7 +604,10 @@ void Net::setBlob(String outputName, const Mat &blob_)
LayerData &ld = impl->layers[pin.lid];
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
MatSize prevShape = ld.outputBlobs[pin.oid].size;
ld.outputBlobs[pin.oid] = blob_.clone();
impl->netWasAllocated = prevShape == blob_.size;
}
Mat Net::getBlob(String outputName)
......
......@@ -736,6 +736,23 @@ void TFImporter::populateNet(Net dstNet)
} // namespace
Net cv::dnn::readNetFromTensorflow(const String &model)
{
Ptr<Importer> importer;
try
{
importer = createTensorflowImporter(model);
}
catch(...)
{
}
Net net;
if (importer)
importer->populateNet(net);
return net;
}
Ptr<Importer> cv::dnn::createTensorflowImporter(const String &model)
{
return Ptr<Importer>(new TFImporter(model.c_str()));
......
......@@ -970,6 +970,24 @@ Mat readTorchBlob(const String &filename, bool isBinary)
return importer->tensors.begin()->second;
}
Net readNetFromTorch(const String &model, bool isBinary)
{
Ptr<Importer> importer;
try
{
importer = createTorchImporter(model, isBinary);
}
catch(...)
{
}
Net net;
if (importer)
importer->populateNet(net);
return net;
}
#else
Ptr<Importer> createTorchImporter(const String &filename, bool isBinary)
......
import numpy as np
import sys
import os
import fnmatch
import argparse
# sys.path.append('<path to opencv_build_dir/lib>')
sys.path.append('/home/arrybn/build/opencv_w_contrib/lib')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find opencv. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir')
try:
import torch
except ImportError:
raise ImportError('Can\'t find pytorch. Please intall it by following instructions on the official site')
from torch.utils.serialization import load_lua
from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation
from imagenet_cls_test_alexnet import Framework, DnnCaffeModel
class NormalizePreproc:
def __init__(self):
pass
@staticmethod
def process(img):
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
image_data = np.expand_dims(image_data, 0)
image_data /= 255.0
return image_data
class CityscapesDataFetch(DatasetImageFetch):
img_dir = ''
segm_dir = ''
segm_files = []
colors = []
i = 0
def __init__(self, img_dir, segm_dir, preproc):
self.img_dir = img_dir
self.segm_dir = segm_dir
self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)])
self.colors = self.get_colors()
self.data_prepoc = preproc
self.i = 0
@staticmethod
def get_colors():
result = []
colors_list = (
(0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153),
(250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0),
(0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32))
for c in colors_list:
result.append(DatasetImageFetch.pix_to_c(c))
return result
def __iter__(self):
return self
def next(self):
if self.i < len(self.segm_files):
segm_file = self.segm_files[self.i]
segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1]
segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST)
img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit')
assert os.path.exists(img_file)
img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]
img = cv.resize(img, (1024, 512))
self.i += 1
gt = self.color_to_gt(segm, self.colors)
img = self.data_prepoc.process(img)
return img, gt
else:
self.i = 0
raise StopIteration
def get_num_classes(self):
return len(self.colors)
@staticmethod
def locate(pattern, root_path):
for path, dirs, files in os.walk(os.path.abspath(root_path)):
for filename in fnmatch.filter(files, pattern):
yield os.path.join(path, filename)
@staticmethod
def rreplace(s, old, new, occurrence=1):
li = s.rsplit(old, occurrence)
return new.join(li)
class TorchModel(Framework):
net = object
def __init__(self, model_file):
self.net = load_lua(model_file)
def get_name(self):
return 'Torch'
def get_output(self, input_blob):
tensor = torch.FloatTensor(input_blob)
out = self.net.forward(tensor).numpy()
return out
class DnnTorchModel(DnnCaffeModel):
net = cv.dnn.Net()
def __init__(self, model_file):
self.net = cv.dnn.readNetFromTorch(model_file)
def get_output(self, input_blob):
self.net.setBlob("", input_blob)
self.net.forward()
return self.net.getBlob(self.net.getLayerNames()[-1])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val")
parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val")
parser.add_argument("--model", help="path to torch model, download it here: "
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa")
parser.add_argument("--log", help="path to logging file")
args = parser.parse_args()
prep = NormalizePreproc()
df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep)
fw = [TorchModel(args.model),
DnnTorchModel(args.model)]
segm_eval = SemSegmEvaluation(args.log)
segm_eval.process(fw, df)
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import os
import argparse
import time
# sys.path.append('<path to git/caffe/python dir>')
sys.path.append('/home/arrybn/git/caffe/python')
try:
import caffe
except ImportError:
raise ImportError('Can\'t find caffe. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to git/caffe/python dir')
# sys.path.append('<path to opencv_build_dir/lib>')
sys.path.append('/home/arrybn/build/opencv_w_contrib/lib')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find opencv. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir')
class DataFetch(object):
imgs_dir = ''
frame_size = 0
bgr_to_rgb = False
__metaclass__ = ABCMeta
@abstractmethod
def preprocess(self, img):
pass
def get_batch(self, imgs_names):
assert type(imgs_names) is list
batch = np.zeros((len(imgs_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
for i in range(len(imgs_names)):
img_name = imgs_names[i]
img_file = self.imgs_dir + img_name
assert os.path.exists(img_file)
img = cv.imread(img_file, cv.IMREAD_COLOR)
min_dim = min(img.shape[-3], img.shape[-2])
resize_ratio = self.frame_size / float(min_dim)
img = cv.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
cols = img.shape[1]
rows = img.shape[0]
y1 = (rows - self.frame_size) / 2
y2 = y1 + self.frame_size
x1 = (cols - self.frame_size) / 2
x2 = x1 + self.frame_size
img = img[y1:y2, x1:x2]
if self.bgr_to_rgb:
img = img[..., ::-1]
image_data = img[:, :, 0:3].transpose(2, 0, 1)
batch[i] = self.preprocess(image_data)
return batch
class MeanBlobFetch(DataFetch):
mean_blob = np.ndarray(())
def __init__(self, frame_size, mean_blob_path, imgs_dir):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
blob = caffe.proto.caffe_pb2.BlobProto()
data = open(mean_blob_path, 'rb').read()
blob.ParseFromString(data)
self.mean_blob = np.array(caffe.io.blobproto_to_array(blob))
start = (self.mean_blob.shape[2] - self.frame_size) / 2
stop = start + self.frame_size
self.mean_blob = self.mean_blob[:, :, start:stop, start:stop][0]
def preprocess(self, img):
return img - self.mean_blob
class MeanChannelsFetch(MeanBlobFetch):
def __init__(self, frame_size, imgs_dir):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
self.mean_blob[0] *= 104
self.mean_blob[1] *= 117
self.mean_blob[2] *= 123
class MeanValueFetch(MeanBlobFetch):
def __init__(self, frame_size, imgs_dir, bgr_to_rgb):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
self.mean_blob *= 117
self.bgr_to_rgb = bgr_to_rgb
def get_correct_answers(img_list, img_classes, net_output_blob):
correct_answers = 0
for i in range(len(img_list)):
indexes = np.argsort(net_output_blob[i])[-5:]
correct_index = img_classes[img_list[i]]
if correct_index in indexes:
correct_answers += 1
return correct_answers
class Framework(object):
in_blob_name = ''
out_blob_name = ''
__metaclass__ = ABCMeta
@abstractmethod
def get_name(self):
pass
@abstractmethod
def get_output(self, input_blob):
pass
class CaffeModel(Framework):
net = caffe.Net
need_reshape = False
def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name, need_reshape=False):
caffe.set_mode_cpu()
self.net = caffe.Net(prototxt, caffemodel, caffe.TEST)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
self.need_reshape = need_reshape
def get_name(self):
return 'Caffe'
def get_output(self, input_blob):
if self.need_reshape:
self.net.blobs[self.in_blob_name].reshape(*input_blob.shape)
return self.net.forward_all(**{self.in_blob_name: input_blob})[self.out_blob_name]
class DnnCaffeModel(Framework):
net = object
def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name):
self.net = cv.dnn.readNetFromCaffe(prototxt, caffemodel)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
def get_name(self):
return 'DNN'
def get_output(self, input_blob):
self.net.setBlob(self.in_blob_name, input_blob)
self.net.forward()
return self.net.getBlob(self.out_blob_name)
class ClsAccEvaluation:
log = file
img_classes = {}
batch_size = 0
def __init__(self, log_path, img_classes_file, batch_size):
self.log = open(log_path, 'w')
self.img_classes = self.read_classes(img_classes_file)
self.batch_size = batch_size
@staticmethod
def read_classes(img_classes_file):
result = {}
with open(img_classes_file) as file:
for l in file.readlines():
result[l.split()[0]] = int(l.split()[1])
return result
def process(self, frameworks, data_fetcher):
sorted_imgs_names = sorted(self.img_classes.keys())
correct_answers = [0] * len(frameworks)
samples_handled = 0
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for x in xrange(0, len(sorted_imgs_names), self.batch_size):
sublist = sorted_imgs_names[x:x + self.batch_size]
batch = data_fetcher.get_batch(sublist)
samples_handled += len(sublist)
frameworks_out = []
fw_accuracy = []
for i in range(len(frameworks)):
start = time.time()
out = frameworks[i].get_output(batch)
end = time.time()
correct_answers[i] += get_correct_answers(sublist, self.img_classes, out)
fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
frameworks_out.append(out)
inference_time[i] += end - start
print >> self.log, samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i]
print >> self.log, "Inference time, ms ", \
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print >> self.log, samples_handled, "L1 difference", log_str, l1_diff
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print >> self.log, samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i]
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print >> self.log, 'Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--mean", help="path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
"this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--batch_size", help="size of images in batch", default=1000)
parser.add_argument("--frame_size", help="size of input image", default=227)
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='prob')
args = parser.parse_args()
data_fetcher = MeanBlobFetch(args.frame_size, args.mean, args.imgs_dir)
frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
import numpy as np
import sys
import os
import argparse
from imagenet_cls_test_alexnet import MeanChannelsFetch, CaffeModel, DnnCaffeModel, ClsAccEvaluation
# sys.path.append('<path to git/caffe/python dir>')
sys.path.append('/home/arrybn/git/caffe/python')
try:
import caffe
except ImportError:
raise ImportError('Can\'t find caffe. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to git/caffe/python dir')
# sys.path.append('<path to opencv_build_dir/lib>')
sys.path.append('/home/arrybn/build/opencv_w_contrib/lib')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find opencv. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--batch_size", help="size of images in batch", default=500, type=int)
parser.add_argument("--frame_size", help="size of input image", default=224, type=int)
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='prob')
args = parser.parse_args()
data_fetcher = MeanChannelsFetch(args.frame_size, args.imgs_dir)
frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
import numpy as np
import sys
import os
import argparse
import tensorflow as tf
from tensorflow.python.platform import gfile
from imagenet_cls_test_alexnet import MeanValueFetch, DnnCaffeModel, Framework, ClsAccEvaluation
# sys.path.append('<path to opencv_build_dir/lib>')
sys.path.append('/home/arrybn/build/opencv_w_contrib/lib')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find opencv. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir')
# If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable
# before runnigng the script:
# LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so
class TensorflowModel(Framework):
sess = tf.Session
output = tf.Graph
def __init__(self, model_file, in_blob_name, out_blob_name):
self.in_blob_name = in_blob_name
self.sess = tf.Session()
with gfile.FastGFile(model_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
self.sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
self.output = self.sess.graph.get_tensor_by_name(out_blob_name + ":0")
def get_name(self):
return 'Tensorflow'
def get_output(self, input_blob):
assert len(input_blob.shape) == 4
batch_tf = input_blob.transpose(0, 2, 3, 1)
out = self.sess.run(self.output,
{self.in_blob_name+':0': batch_tf})
out = out[..., 1:1001]
return out
class DnnTfInceptionModel(DnnCaffeModel):
net = cv.dnn.Net()
def __init__(self, model_file, in_blob_name, out_blob_name):
self.net = cv.dnn.readNetFromTensorflow(model_file)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
def get_output(self, input_blob):
return super(DnnTfInceptionModel, self).get_output(input_blob)[..., 1:1001]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:"
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt")
parser.add_argument("--model", help="path to tensorflow model, download it here:"
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--batch_size", help="size of images in batch", default=1)
parser.add_argument("--frame_size", help="size of input image", default=224)
parser.add_argument("--in_blob", help="name for input blob", default='input')
parser.add_argument("--out_blob", help="name for output blob", default='softmax2')
args = parser.parse_args()
data_fetcher = MeanValueFetch(args.frame_size, args.imgs_dir, True)
frameworks = [TensorflowModel(args.model, args.in_blob, args.out_blob),
DnnTfInceptionModel(args.model, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import argparse
import time
from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel
sys.path.append('/home/arrybn/build/opencv_w_contrib/lib')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find opencv. If you\'ve built it from sources without installation, '
'uncomment the line before and insert there path to opencv_build_dir/lib dir')
def get_metrics(conf_mat):
pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat)
t = np.sum(conf_mat, 1)
num_cl = np.count_nonzero(t)
assert num_cl
mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl
col_sum = np.sum(conf_mat, 0)
mean_iou = np.sum(
np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl
return pix_accuracy, mean_accuracy, mean_iou
def eval_segm_result(net_out):
assert type(net_out) is np.ndarray
assert len(net_out.shape) == 4
channels_dim = 1
y_dim = channels_dim + 1
x_dim = y_dim + 1
res = np.zeros(net_out.shape).astype(np.int)
for i in range(net_out.shape[y_dim]):
for j in range(net_out.shape[x_dim]):
max_ch = np.argmax(net_out[..., i, j])
res[0, max_ch, i, j] = 1
return res
def get_conf_mat(gt, prob):
assert type(gt) is np.ndarray
assert type(prob) is np.ndarray
conf_mat = np.zeros((gt.shape[0], gt.shape[0]))
for ch_gt in range(conf_mat.shape[0]):
gt_channel = gt[ch_gt, ...]
for ch_pr in range(conf_mat.shape[1]):
prob_channel = prob[ch_pr, ...]
conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel))
return conf_mat
class MeanChannelsPreproc:
def __init__(self):
pass
@staticmethod
def process(img):
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
mean = np.ones(image_data.shape)
mean[0] *= 104
mean[1] *= 117
mean[2] *= 123
image_data -= mean
image_data = np.expand_dims(image_data, 0)
return image_data
class DatasetImageFetch(object):
__metaclass__ = ABCMeta
data_prepoc = object
@abstractmethod
def __iter__(self):
pass
@abstractmethod
def next(self):
pass
@staticmethod
def pix_to_c(pix):
return pix[0] * 256 * 256 + pix[1] * 256 + pix[2]
@staticmethod
def color_to_gt(color_img, colors):
num_classes = len(colors)
gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(np.int)
for img_y in range(color_img.shape[0]):
for img_x in range(color_img.shape[1]):
c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x])
if c in colors:
cls = colors.index(c)
gt[cls][img_y][img_x] = 1
return gt
class PASCALDataFetch(DatasetImageFetch):
img_dir = ''
segm_dir = ''
names = []
colors = []
i = 0
def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc):
self.img_dir = img_dir
self.segm_dir = segm_dir
self.colors = self.read_colors(segm_cls_colors_file)
self.data_prepoc = preproc
self.i = 0
with open(names_file) as f:
for l in f.readlines():
self.names.append(l.rstrip())
@staticmethod
def read_colors(img_classes_file):
result = []
with open(img_classes_file) as f:
for l in f.readlines():
color = np.array(map(int, l.split()[1:]))
result.append(DatasetImageFetch.pix_to_c(color))
return result
def __iter__(self):
return self
def next(self):
if self.i < len(self.names):
name = self.names[self.i]
self.i += 1
segm_file = self.segm_dir + name + ".png"
img_file = self.img_dir + name + ".jpg"
gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors)
img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1])
return img, gt
else:
self.i = 0
raise StopIteration
def get_num_classes(self):
return len(self.colors)
class SemSegmEvaluation:
log = file
def __init__(self, log_path,):
self.log = open(log_path, 'w')
def process(self, frameworks, data_fetcher):
samples_handled = 0
conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))]
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for in_blob, gt in data_fetcher:
frameworks_out = []
samples_handled += 1
for i in range(len(frameworks)):
start = time.time()
out = frameworks[i].get_output(in_blob)
end = time.time()
segm = eval_segm_result(out)
conf_mats[i] += get_conf_mat(gt, segm[0])
frameworks_out.append(out)
inference_time[i] += end - start
pix_acc, mean_acc, miou = get_metrics(conf_mats[i])
name = frameworks[i].get_name()
print >> self.log, samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc
print >> self.log, samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc
print >> self.log, samples_handled, 'Mean IOU, %s:' % name, 100 * miou
print >> self.log, "Inference time, ms ", \
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print >> self.log, samples_handled, "L1 difference", log_str, l1_diff
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print >> self.log, samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i]
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print >> self.log, 'Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages")
parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/")
parser.add_argument("--val_names", help="path to file with validation set image names, download it here: "
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt")
parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: "
"https://github.com/opencv/opencv_contrib/blob/master/modules/dnn/samples/pascal-classes.txt")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/opencv/opencv_contrib/blob/master/modules/dnn/samples/fcn8s-heavy-pascal.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='score')
args = parser.parse_args()
prep = MeanChannelsPreproc()
df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep)
fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
segm_eval = SemSegmEvaluation(args.log)
segm_eval.process(fw, df)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment